272
Views
5
CrossRef citations to date
0
Altmetric
Articles

Removal of harmful algae by Shigella sp. H3 and Alcaligenes sp. H5: algicidal pathways and characteristics

, , , &
Pages 4341-4353 | Received 10 Feb 2021, Accepted 19 Jun 2021, Published online: 08 Jul 2021

Reference

  • Li H, Ai H, Kang L, et al. Simultaneous microcystis algicidal and microcystin degrading capability by a single Acinetobacter bacterial strain. Environ Sci Technol. 2016;50(21):11903–11911. doi:10.1021/acs.est.6b03986
  • He L, Lin Z, Wang Y, et al. Facilitating harmful algae removal in fresh water via joint effects of multi-species algicidal bacteria. J Hazard Mater. 2021;403:0304–3894.
  • Yu X, Cai G, Wang H, et al. Fast-growing algicidal Streptomyces sp U3 and its potential in harmful algal bloom controls. J Hazard Mater. 2018;341:138–149. doi:10.1016/j.jhazmat.2017.06.046
  • Zhang Y, Su Y, Liu Z, et al. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu Basin, Eastern China. Sci Total Environ. 2018;613:907–918. doi:10.1016/j.scitotenv.2017.09.185
  • Jarvie HP, Johnson LT, Sharpley AN, et al. Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices? J Environ Qual. 2017;46(1):123–132. doi:10.2134/jeq2016.07.0248
  • Chen W, Jia Y, Li E, et al. Soil-Based treatments of mechanically collected Cyanobacterial blooms from Lake Taihu: efficiencies and potential risks. Environ Sci Technol. 2012;46(24):13370–13376. doi:10.1021/es3027902
  • Alshahri AH, Fortunato L, Ghaffour N, et al. Controlling harmful algal blooms (HABs) by coagulation-flocculation-sedimentation using liquid ferrate and clay. Chemosphere 2021;274:129676–129676. doi:10.1016/j.chemosphere.2021.129676
  • Pal M, Yesankar PJ, Dwivedi A, et al. Biotic control of harmful algal blooms (HABs): A brief review. J Environ Manage. 2020;268:110687. doi:10.1016/j.jenvman.2020.110687
  • Ger KA, Urrutia-Cordero P, Frost PC, et al. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harmful Algae. 2016;54:128–144. doi:10.1016/j.hal.2015.12.005
  • Yu Y, Zeng Y, Li J, et al. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Sci Total Environ. 2019;650:34–43. doi:10.1016/j.scitotenv.2018.08.433
  • Su JF, Shao SC, Ma F, et al. Bacteriological control by Raoultella sp R11 on growth and toxins production of Microcystis aeruginosa. Chem Eng J. 2016;293:139–150. doi:10.1016/j.cej.2016.02.044
  • Li Y, Lei X, Zhu H, et al. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci Rep. 2016;6:21984. doi:10.1038/srep21984
  • McDowell RE, Amsler CD, Dickinson DA, et al. Reactive oxygen species and the antarctic macroalgal wound response. J Phycol. 2014;50(1):71–80. doi:10.1111/jpy.12127
  • Zhang H, An X, Zhou Y, et al. Effect of oxidative stress induced by Brevibacterium sp BS01 on a HAB causing species-Alexandrium tamarense. Plos One. 2013;8(5):e63018. doi:10.1371/journal.pone.0063018
  • Kong Y, Xu X, Zhu L. Cyanobactericidal effect of Streptomyces sp HJC-D1 on Microcystis auruginosa. Plos One. 2013;8(2):e57654. doi:10.1371/journal.pone.0057654
  • Zhang S, Zheng W, Wang H. Physiological response and morphological changes of heterosigma Akashiwo to an algicidal compound prodigiosin. J Hazard Mater. 2020;385:121530. doi:10.1016/j.jhazmat.2019.121530
  • Zhao S, Pan W-B, Ma C. Stimulation and inhibition effects of algae-lytic products from Bacillus cereus strain L7 on anabaena flos-aquae. J Appl Phycol. 2012;24(5):1015–1021. doi:10.1007/s10811-011-9725-9
  • Xie P, Ma J, Fang J, et al. Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environ Sci Technol. 2013;47(24):14051–14061. doi:10.1021/es4027024
  • Zhou S, Zhu S, Shao Y, et al. Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation. Water Res. 2015;72:381–390. doi:10.1016/j.watres.2014.11.023
  • Fleurence J. The enzymatic degradation of algal cell walls: a useful approach for improving protein accessibility? J Appl Phycol. 1999;11(3):313–314. doi:10.1023/A:1008183704389
  • Eckersley E, Berger BW. An engineered polysaccharide lyase to combat harmful algal blooms. Biochem Eng J. 2018;132:225–232. doi:10.1016/j.bej.2018.01.005
  • Jia P, Zhou Y, Zhang X, et al. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation. Water Res. 2018;131:122–130. doi:10.1016/j.watres.2017.12.020
  • Wang Z, Chen Y, Xie P, et al. Removal of Microcystis aeruginosa by UV-activated persulfate: performance and characteristics. Chem Eng J. 2016;300:245–253. doi:10.1016/j.cej.2016.04.125
  • Yang C-C, Wen RC, Shen CR, et al. Using a microfluidic gradient generator to characterize BG-11 medium for the growth of Cyanobacteria synechococcus elongatus PCC7942. Micromachines 2015;6(11):1755–1767. doi:10.3390/mi6111454
  • Panova A, Dimkov R. Depth distribution of freshwater microorganisms and physicochemical characteristics in iskar reservoir. Biotechnol Biotechnol Equip. 2008;22(1):560–565. doi:10.1080/13102818.2008.10817512
  • Lee A, Cheng K-C, Liu J-R. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. Plos One. 2017;12(8):e0182220.
  • Molina L, La Rosa R, Nogales J, et al. Pseudomonas putida KT2440 metabolism undergoes sequential modifications during exponential growth in a complete medium as compounds are gradually consumed. Environ Microbiol. 2019;21(7):2375–2390. doi:10.1111/1462-2920.14622
  • Amin SA, Hmelo LR, van Tol HM, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522(7554):98–U253. doi:10.1038/nature14488
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–526.
  • Albertson OE. Changes in the biochemical oxygen demand procedure in the 21st edition of standard methods for the examination of water and wastewater. Water Environ Res. 2007;79(4):453–455. doi:10.2175/106143006X116083
  • Ni L, Rong S, Gu G, et al. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere 2018;212:654–661. doi:10.1016/j.chemosphere.2018.08.045
  • Tan S, Hu X, Yin P, et al. Photosynthetic inhibition and oxidative stress to the toxic phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism. J Microbiol. 2016;54(5):364–375. doi:10.1007/s12275-016-6012-0
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Yang L, Tan G-Y, Fu Y-Q, et al. Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comp. Biochem. Physiol., Part C: Pharmacol., Toxicol. Endocrinol. 2010;151(2):204–208. doi:10.1016/j.cbpc.2009.10.010
  • Zhang R, Zhang X, Tang Y, et al. Composition, isolation, purification and biological activities of sargassum fusiforme polysaccharides: a review. Carbohydr Polym. 2020;228:115381. doi:10.1016/j.carbpol.2019.115381
  • Myklestad SM. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Total Environ. 1995;165(1-3):155–164. doi:10.1016/0048-9697(95)04549-G
  • Wang D-Z, Li C, Zhang Y, et al. Quantitative proteomic analysis of differentially expressed proteins in the toxicity-lost mutant of Alexandrium catenella (dinophyceae) in the exponential phase. J Proteomics. 2012;75(18):5564–5577. doi:10.1016/j.jprot.2012.08.001
  • Yamamoto Y, Aminaka R, Yoshioka M, et al. Quality control of photosystem II: impact of light and heat stresses. Photosyn Res. 2008;98(1-3):589–608. doi:10.1007/s11120-008-9372-4
  • Yin H, Yang P, Kong M. Effects of nitrate dosing on the migration of reduced sulfur in black odorous river sediment and the influencing factors. Chem Eng J. 2019;371:516–523. doi:10.1016/j.cej.2019.04.095
  • Zeng Y, Wang J, Yang C, et al. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Sci Total Environ. 2021;769:144489. doi:10.1016/j.scitotenv.2020.144489
  • Elisabeth M. Cyanobacterial peptides beyond microcystins-A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019;151:488–499. doi:10.1016/j.watres.2018.12.048
  • Chen S, Yan M, Huang T, et al. Disentangling the drivers of microcystis decomposition: metabolic profile and co-occurrence of bacterial community. Sci Total Environ. 2020;739:140062. doi:10.1016/j.scitotenv.2020.140062
  • Zhou J, Zhang B, Yu K, et al. Functional profiles of phycospheric microorganisms during a marine dinoflagellate bloom. Water Res. 2020;173:115554. doi:10.1016/j.watres.2020.115554

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.