154
Views
0
CrossRef citations to date
0
Altmetric
Articles

Response surface methodology to investigate the comparison of two carbon-based air cathodes for bio-electrochemical systems

, , , , &
Pages 4376-4390 | Received 02 Nov 2020, Accepted 21 Jun 2021, Published online: 13 Jul 2021

References

  • Jobin L, Jose C, Pages C, et al. Methanogenesis control in bioelectrochemical systems: a carbon footprint reduction assessment. J Environ Chem Eng. 2018;6:803–810. DOI:10.1016/j.jece.2017.12.033.
  • Zhang X, He W, Zhang R, et al. High-performance carbon aerogel air cathodes for microbial fuel cells. Chem Sus Chem. 2016;9:2788–2795. DOI:10.1002/cssc.201600590.
  • McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer–Can this be achieved? Environ Sci Technol. 2011;45:7100–7106. DOI:10.1021/es2014264.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7:375–381. DOI:10.1038/nrmicro2113.
  • Li X, Zheng Y, Nie P, et al. Synchronous recovery of iron and electricity using a single chamber air-cathode microbial fuel cell. RSC Adv. 2017;7:12503–12510. DOI:10.1039/c6ra28148f.
  • Logan BE, Wallack MJ, Kim KY, et al. Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett. 2015;2:206–214. DOI:10.1021/acs.estlett.5b00180.
  • Tao Q, Zhou S, Luo J, et al. Nutrient removal and electricity production from wastewater using microbial fuel cell technique. Desalination. 2015;365:92–98. DOI:10.1016/j.desal.2015.02.021.
  • Kelly PT, He Z. Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2014;153:351–360. DOI:10.1016/j.biortech.2013.12.046.
  • Logan BE. Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol. 2005;52:31–37. http://www.ncbi.nlm.nih.gov/pubmed/16180406.
  • Rabaey K, Van de Sompel K, Maignien L, et al. Microbial fuel cells for sulfide removal †. Environ Sci Technol. 2006;40:5218–5224. DOI:10.1021/es060382u.
  • Verstraete W, Rabaey K. Critical review microbial fuel cells : Methodology and technology. Environ Sci Technol. 2006;40:5181–5192. DOI:10.1021/es0605016.
  • Angelov A, Bratkova S, Loukanov A. Microbial fuel cell based on electroactive sulfate-reducing biofilm. Energy Convers Manag. 2013;67:283–286. DOI:10.1016/j.enconman.2012.11.024.
  • Seo Y, Kang H, Chang S, et al. Effects of nitrate and sulfate on the performance and bacterial community structure of membrane-less single-chamber air-cathode microbial fuel cells. J Environ Sci Heal Part A. 2018;53:13–24. DOI:10.1080/10934529.2017.1366242.
  • Li S, Chen G. Factors affecting the effectiveness of bioelectrochemical system applications: data synthesis and meta-analysis. Batteries. 2018;4:34, DOI:10.3390/batteries4030034.
  • Gude VG. Wastewater treatment in microbial fuel cells – an overview. J Clean Prod. 2016;122:287–307. DOI:10.1016/j.jclepro.2016.02.022.
  • Perazzoli S, De Santana Neto JP, Soares HM. Prospects in bioelectrochemical technologies for wastewater treatment. Water Sci Technol. 2018;78:1237–1248. DOI:10.2166/wst.2018.410.
  • Lee D-J, Liu X, Weng H-L. Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresour Technol. 2014;156:14–19. DOI:10.1016/j.biortech.2013.12.129.
  • Tabrizi NS, Yavari M. Methylene blue removal by carbon nanotube-based aerogels. Chem Eng Res Des. 2015;94:516–523. DOI:10.1016/j.cherd.2014.09.011.
  • S. Kalathil, Patil S.A., Pant D. Microbial fuel cells: electrode materials. In: Encyclopedia of Interfacial Chemistry .Elsevier; 2018. p. 309–318. DOI:10.1016/B978-0-12-409547-2.13459-6.
  • Zhang X, Xia X, Ivanov I, et al. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ Sci Technol. 2014;48:2075–2081. DOI:10.1021/es405029y.
  • Zhang F, Cheng S, Pant D, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun. 2009;11:2177–2179. DOI:10.1016/j.elecom.2009.09.024.
  • Cord-Ruwisch R, Law Y, Cheng KY. Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresour Technol. 2011;102:9691–9696. DOI:10.1016/j.biortech.2011.07.100.
  • You S, Song YS, Bai SJ. Characterization of a photosynthesis-based bioelectrochemical film fabricated with a carbon nanotube hydrogel. Biotechnol Bioprocess Eng. 2019;24:337–342. DOI:10.1007/s12257-018-0470-7.
  • Arenillas A, Menéndez JA, Reichenauer G, et al. Organic and carbon gels. Cham: Springer International Publishing; 2019. DOI:10.1007/978-3-030-13897-4.
  • Feng L, Yan Y, Chen Y, et al. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells. Energy Environ Sci 2011;4:1892, DOI:10.1039/c1ee01153g.
  • Liu X-W, Li W-W, Yu H-Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev. 2014;43:7718–7745. DOI:10.1039/C3CS60130G.
  • Koleva R, Yemendzhiev H, Nenov V. Microbial fuel cell as a free-radical scavenging tool. Biotechnol Biotechnol Equip. 2017;31:511–515. DOI:10.1080/13102818.2017.1304183.
  • Pant D, Van Bogaert G, Diels L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543. DOI:10.1016/j.biortech.2009.10.017.
  • Zhang T, Bain TS, Barlett MA, et al. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by desulfuromonas strain TZ1. Microbiol (United Kingdom). 2014;160:123–129. DOI:10.1099/mic.0.069930-0.
  • Zhao F, Rahunen N, Varcoe JR, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol. 2008;42:4971–4976. DOI:10.1021/es8003766.
  • Wang Z, Mahadevan GD, Wu Y, et al. Progress of air-breathing cathode in microbial fuel cells. J Power Sources. 2017;356:245–255. DOI:10.1016/j.jpowsour.2017.02.004.
  • Cheng S, Liu H, Logan BE. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem Commun. 2006;8:489–494. DOI:10.1016/j.elecom.2006.01.010.
  • Javaheri A, Salman Tabrizi M, and Rafizadeh N. Investigation of the synergism effect and electrocatalytic activities of Pt and Ru nanoparticles supported on the carbon aerogel-carbon nanotube (CA-CNT) for methanol oxidation reaction (MOR). J Renew Energy Environ. 2020;7:50–55. DOI:10.30501/jree.2020.234091.1116.
  • Logan BE. Microbial fuel cells. Hoboken (NJ): John Wiley & Sons, Inc.; 2007; DOI:10.1002/9780470258590.
  • Montgomery DC. Design and analysis of experiments. 8th ed. New York: John Wiley & Sons Ltd.; 2012. http://faculty.business.utsa.edu/manderso/STA4723/readings/Douglas-C.-Montgomery-Design-and-Analysis-of-Experiments-Wiley-2012.pdf.
  • Emamjomeh MM, Kakavand S, Jamali HA, et al. The treatment of printing and packaging wastewater by electrocoagulation-flotation: the simultaneous efficacy of critical parameters and economics, desalin. Water Treat. 2020;205:161–174. DOI:10.5004/dwt.2020.26339.
  • Chen S, Liu G, Zhang R, et al. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure. Bioresour Technol. 2012;116:507–511. DOI:10.1016/j.biortech.2012.03.073.
  • Cheng S, Wu J. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells. Bioelectrochemistry. 2013;92:22–26. DOI:10.1016/j.bioelechem.2013.03.001.
  • Chen X, Du W, Liu D. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochem Eng J. 2008;40:423–429. DOI:10.1016/j.bej.2008.01.012.
  • Emamjomeh MM, Jamali HA, Naghdali Z, et al. Carwash wastewater treatment by the application of an environmentally friendly hybrid system: an experimental design approach. Desalin Water Treat. 2019;160:171–177. DOI:10.5004/dwt.2019.24382.
  • Khuri JA, Cornell AI. Response surfaces: design and analyses. New York: Marcel Dekker; 1996.
  • Yang Z-H, Huang J, Zeng G-M, et al. Optimization of flocculation conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response surface methodology. Bioresour Technol. 2009;100:4233–4239. DOI:10.1016/j.biortech.2008.12.033.
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol. 2003;21:1229–1232. DOI:10.1038/nbt867.
  • Mashkour M, Rahimnejad M, Mashkour M, et al. Application of wet nanostructured bacterial cellulose as a novel hydrogel bioanode for microbial fuel cells. Chem Electro Chem. 2017;4:648–654. DOI:10.1002/celc.201600868.
  • Yang Y, Liu T, Liao Q, et al. A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. J Mater Chem A. 2016;4:15913–15919. DOI:10.1039/c6ta05002f.
  • Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: from fundamentals to applications. A review. J Power Sources. 2017;356:225–244. DOI:10.1016/j.jpowsour.2017.03.109.
  • Zhang Y, Noori JS, Angelidaki I. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci. 2011;4:4340–4346. DOI:10.1039/c1ee02089g.
  • Zhang F, Li J, He Z. A new method for nutrients removal and recovery from wastewater using a bioelectrochemical system. Bioresour Technol 2014;166:630–634. DOI:10.1016/j.biortech.2014.05.105.
  • Offei F, Thygesen A, Mensah M, et al. A viable electrode material for use in microbial fuel cells for tropical regions. Energies. 2016;9:1–14. DOI:10.3390/en9010035.
  • Yang M, Zhong Y, Zhang B, et al. Enhanced sulfide removal and bioelectricity generation in microbial fuel cells with anodes modified by vertically oriented nanosheets. Environ Technol. 2019;40:1770–1779. DOI:10.1080/09593330.2018.1429496.
  • Pozo Zamora .Guillermo Alonso, Bio-Electrochemical process for Metal and Sulfur Recovery from Acid Mine Drainage, The University of Queensland. 2017. DOI:10.14264/uql.2017.896.
  • Yin MY, Zhao XJ, Li CG, et al. Treatment, electricity harvesting and sulfur recovery from flue gas pre-treatment wastewater using microbial fuel cells with sulfate reduction bacterial. Adv Mater Res. 2014;1073–1076:920–923. DOI:10.4028/www.scientific.net/AMR.1073-1076.920.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.