320
Views
4
CrossRef citations to date
0
Altmetric
Articles

Response and tolerance ability of Chlorella vulgaris to cadmium pollution stress

, , , , &
Pages 4391-4401 | Received 19 Feb 2021, Accepted 25 Jun 2021, Published online: 18 Jul 2021

References

  • Ding X, Ye S, Laws EA, et al. The concentration distribution and pollution assessment of heavy metals in surface sediments of the Bohai Bay. China Mar Pollut Bull. 2019;149:110497. doi:10.1016/j.marpolbul.2019.110497.
  • Zhao G, Ye S, Yuan H, et al. Surface sediment properties and heavy metal contamination assessment in river sediments of the Pearl River Delta. China Mar Pollut Bull. 2018;136:300–308. doi:10.1016/j.marpolbul.2018.09.035.
  • Liu S, Chen M, Cao X, et al. Chromium (VI) removal from water using cetylpyridinium chloride (CPC) modified montmorillonite. Sep Purif Technol. 2020;241:116732. doi:10.1016/j.seppur.2020.116732.
  • Xiong J-Q, Ru S, Zhan Q, et al. Insights into the effect of cerium oxide nanoparticle on microalgal degradation of sulfonamides. Bioresour Technol. 2020;309:123452. doi:10.1016/j.biortech.2020.123452.
  • Xiong J-Q, Jeon B-H, Govindwar SP, et al. Plant and microalgae consortium for an enhanced biodegradation of sulfamethazine. Environ Sci Pollut R. 2019;26:34552–34561. doi:10.1007/s11356-019-06506-y.
  • Jin M, Xiao X, Qin L, et al. Physiological and morphological responses and tolerance mechanisms of Isochrysis galbana to Cr(VI) stress. Bioresour Technol. 2020;302:122860. doi:10.1016/j.biortech.2020.122860.
  • Miao X, Xiao J, Pang M, et al. Effect of the large-scale green tide on the species succession of green macroalgal micro-propagules in the coastal waters of qingdao. China Mar Pollut Bull. 2017;09. doi:10.1016/j.marpolbul.2017.09.060.
  • Rodrigues MS, Ferreira LS, de Carvalho JC, et al. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. J Hazard Mater. 2012;217-218:246–255. doi:10.1016/j.jhazmat.2012.03.022.
  • Wang X, Utsumi M, Gao Y, et al. Influences of metal ions on microcystin-LR degradation capacity and dynamics in microbial distribution of biofilm collected from water treatment plant nearby Kasumigaura lake. Chemosphere. 2016b;147:230–238. doi:10.1016/j.chemosphere.2015.12.067.
  • Ferreira LS, Rodrigues MS, de Carvalho JCM, et al. Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J. 2011;173:326–333. doi:10.1016/j.cej.2011.07.039.
  • Edris G, Alhamed Y, Alzahrani A. Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: equilibrium and kinetic study. Arab J Sci Eng. 2013;39:87–93. doi:10.1007/s13369-013-0820-x.
  • Hui Z, Huaxiao Y, Ming L, et al. Pyrolytic characteristics and kinetics of the marine green tide macroalgae, Enteromorpha prolifera. Chin J Oceanol. 2011;29:996–1001. doi:10.1007/s00343-011-0095-6.
  • Gao QT, Wong YS, Tam NFY. Antioxidant responses of different microalgal species to nonylphenol-induced oxidative stress. J Appl Phycol. 2017;29:1317–1329. doi:10.1007/s10811-017-1065-y.
  • Bajguz A. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous Brassinolide. Arch Environ Contam Toxicol. 2011;60:406–416. doi:10.1007/s00244-010-9551-0.
  • Devasya R, Bassi A. Investigation of phyco-remediation of road salt run-off with marine microalgae Nannochloropsis gaditana. Environ Technol. 2019;40:553–563. doi:10.1080/09593330.2017.1397768.
  • Wang M, Zhang Y, Guo P. Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of microcystis flos-aquae. Aquat Toxicol. 2017;186:67–76. doi:10.1016/j.aquatox.2017.02.022.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Wei S, Cao J, Ma X, et al. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. Ecotoxicol Environ Saf. 2020;198:110648. doi:10.1016/j.ecoenv.2020.110648.
  • Nounjan N, Nghia PT, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol. 2012;169:596–604. doi:10.1016/j.jplph.2012.01.004.
  • Liu S, Yu Z, Song X, et al. Effects of modified clay on the physiological and photosynthetic activities of Amphidinium carterae Hulburt. Harmful Algae. 2017;70:64–72. doi:10.1016/j.hal.2017.10.007.
  • Urrutia C, Yañez-Mansilla E, Jeison D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019;43. doi:10.1016/j.algal.2019.101659.
  • Jiang R, Wang M, Xue J, et al. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of nitrosomonas europaea. Chemosphere. 2015;119:896–901. doi:10.1016/j.chemosphere.2014.08.040.
  • Saranya D, Shanthakumar S. Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential. J Environ Manage. 2019;241:167–178. doi:10.1016/j.jenvman.2019.04.031.
  • Han Z, Yan H, Zhao H, et al. Bio-precipitation of calcite with preferential orientation induced by synechocystis sp. PCC6803. Geomicrobiol J. 2014;31:884–899. doi:10.1080/01490451.2014.907379.
  • Abinandan S, Subashchandrabose SR, Panneerselvan L, et al. Potential of acid-tolerant microalgae, desmodesmus sp. MAS1 and heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour Technol. 2019;278:9–16. doi:10.1016/j.biortech.2019.01.053.
  • Abinandan S, Subashchandrabose SR, Venkateswarlu K, et al. Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5. Bioresour Technol. 2019;281:469–473. doi:10.1016/j.biortech.2019.03.001.
  • Zhang W, Tan NG, Fu B, et al. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics. 2015;7:426–438. doi:10.1039/c4mt00253a.
  • Xu M, Zhang R, Song W, et al. Probing the toxic mechanism of bisphenol A with acid phosphatase at the molecular level. Environ Sci Pollut Res Int. 2018;25:11431–11439. doi:10.1007/s11356-018-1378-7.
  • Markou G, Mitrogiannis D, Çelekli A, et al. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem Eng J. 2015;259:806–813. doi:10.1016/j.cej.2014.08.037.
  • Menard A, Drobne D, Jemec A. Ecotoxicity of nanosized TiO2. Review of in vivo data. Environ Pollut. 2011;159:677–684. doi:10.1016/j.envpol.2010.11.027.
  • Wang C, Wang X, Wang P, et al. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905. Ecotoxicol Environ Saf. 2016a;132:231–239. doi:10.1016/j.ecoenv.2016.06.010.
  • Samadani M, Perreault F, Oukarroum A, et al. Effect of cadmium accumulation on green algae Chlamydomonas reinhardtii and acid-tolerant Chlamydomonas CPCC 121. Chemosphere. 2018;191:174–182. doi:10.1016/j.chemosphere.2017.10.017.
  • Alho LOG, Gebara RC, Paina KA, et al. Responses of Raphidocelis subcapitata exposed to Cd and Pb: mechanisms of toxicity assessed by multiple endpoints. Ecotoxicol Environ Saf. 2019;169:950–959. doi:10.1016/j.ecoenv.2018.11.087.
  • Nowicka B, Plucinski B, Kuczynska P, et al. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf. 2016;130:133–145. doi:10.1016/j.ecoenv.2016.04.010.
  • Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8 K (chlorophyceae). Springerplus. 2013;2:147–153.
  • Shanker AK, Djanaguiraman M, Venkateswarlu B. Chromium interactions in plants: current status and future strategies. Metallomics. 2009;1:375–383. doi:10.1039/b904571f.
  • Qin H, Chen L, Lu N, et al. Toxic effects of enrofloxacin on Scenedesmus obliquus. Front Env Sci Eng. 2011;6:107–116. doi:10.1007/s11783-011-0327-1.
  • Sánchez-Thomas R, Moreno-Sánchez R, García-García JD. Accumulation of zinc protects against cadmium stress in photosynthetic Euglena gracilis. Environ Exp Bot. 2016;131:19–31. doi:10.1016/j.envexpbot.2016.06.009.
  • Mallick N, Mohn FH. Reactive oxygen species: response of algal cells. J Plant Physiol. 2000;157:183–193. doi:10.1016/s0176-1617(00)80189-3.
  • Kurade MB, Kim JR, Govindwar S, et al. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 2016;20:126–134. doi:10.1016/j.algal.2016.10.003.
  • Mi C, Teng Y, Wang X, et al. Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent. Ecotoxicol Environ Saf. 2018;153:78–83. doi:10.1016/j.ecoenv.2018.01.055.
  • Fu D, Zhang Q, Fan Z, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquat Toxicol. 2019;216:105319), doi:10.1016/j.aquatox.2019.105319.
  • Hamed SM, Selim S, Klock G, et al. Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf. 2017;144:19–25. doi:10.1016/j.ecoenv.2017.05.048.
  • Kumar KS, Dahms HU, Won EJ, et al. Microalgae - a promising tool for heavy metal remediation. Ecotoxicol Environ Saf. 2015;113:329–352. doi:10.1016/j.ecoenv.2014.12.019.
  • Purbonegoro T S, Puspitasari R, Husna NA. Toxicity of copper on the growth of marine microalgae pavlova sp. and its chlorophyll-a. IOP Conference Series: Earth Environ Sci. 2018;118; doi:10.1088/1755-1315/118/1/012060.
  • Maznah WO W, Al-Fawwaz AT, Surif M. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang Malaysia. J Environ Sci. 2012;24:1386–1393. doi:10.1016/s1001-0742(11)60931-5.
  • Zhou T, Wang J, Zheng H, et al. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour Technol. 2018;269:285–291. doi:10.1016/j.biortech.2018.08.131.
  • Cheng J, Yin W, Chang Z, et al. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2016;29:211–221. doi:10.1007/s10811-016-0916-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.