320
Views
1
CrossRef citations to date
0
Altmetric
Articles

Humic acid attachment on chitosan-modified silica gel as an economical, efficient, and selective adsorbent for thorium and uranium removal

ORCID Icon &
Pages 170-184 | Received 24 Feb 2021, Accepted 18 Jul 2021, Published online: 29 Aug 2021

References

  • Paradis CJ, Jagadamma S, Watson DB, et al. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions. J Contam Hydrol. 2016. doi:10.1016/j.jconhyd.2016.02.002
  • Abdel-Rahman M, Rezk MM, Abdel Moneim AE, et al. Thorium exerts hazardous effects on some neurotransmitters and thyroid hormones in adult male rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2019. doi:10.1007/s00210-019-01718-y
  • Registry, A. for T. S. and D. Toxicological Profile for Thorium. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA; 2017.
  • Akbari-Jeyhouni R, Rezaei Ochbelagh D, Maiorino JR, et al. The utilization of thorium in small modular reactors – Part I: neutronic assessment. Ann Nucl Energy. 2018;120:422–430. doi:10.1016/j.anucene.2018.06.013.
  • Abdellah WM. Preparation of pure uranium, thorium, and yttrium oxides from El-Garra El-Hamra sulfate leach liquor. Radiochemistry. 2020;62(3):347–358. doi:10.1134/S1066362220030078.
  • Chung KW, Yoon HS, Kim CJ, et al. Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications. J Ind Eng Chem. 2020;83:72–80. doi:10.1016/j.jiec.2019.11.014.
  • Talan D, Huang Q. Separation of thorium, uranium, and rare earths from a strip solution generated from coarse coal refuse. Hydrometallurgy. 2020;197:105446. doi:10.1016/j.hydromet.2020.105446.
  • Vijayalakshmi R, Mishra SL, Singh H, et al. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy. 2001;61(2):75–80. doi:10.1016/S0304-386X(00)00159-6.
  • Drysdale JA, Buesseler KO. Uranium adsorption behaviour of amidoximated fibers under coastal ocean conditions. Prog Nucl Energy. 2020;119:103170. doi:10.1016/J.PNUCENE.2019.103170.
  • Othman NAF, Selambakkannu S, Yamanobe T, et al. Radiation grafting of DMAEMA and DEAEMA-based adsorbents for thorium adsorption. J Radioanal Nucl Chem. 2020;324(1):429–440. doi:10.1007/S10967-020-07078-9.
  • Abd El-Hamid AA. Selective separation of uranium and thorium using mesoporous modified nano-alumina from Abu rusheid leach liquor. Arab J Nucl Sci Appl. 2019. doi:10.21608/ajnsa.2019.6727.1157
  • Annam S, Brahmmananda Rao CVS, Sivaraman N, et al. Carbamoylmethylphosphine oxide functionalised porous crosslinked polymers towards sequential separation of uranium (VI) and thorium (IV). React Funct Polym. 2018. doi:10.1016/j.reactfunctpolym.2018.07.026
  • Riegel M. Sorption of natural uranium on weakly basic anion exchangers. Solvent Extr Ion Exch. 2017. doi:10.1080/07366299.2017.1368591
  • Whitty-Léveillé L, Aumaitre C, Morin JF, et al. Design of an adsorbent-bearing silica Schiff base ligand for the highly efficient removal of uranium and thorium in acidic solutions. Sep Purif Technol. 2019. doi:10.1016/j.seppur.2019.115709
  • Yousef LA, Bakry AR, Abd El-Magied MO. Uranium(VI) recovery from its leach liquor using zirconium molybdophosphate composite: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem. 2019. doi:10.1007/s10967-019-06871-5
  • Bailey SE, Olin TJ, Bricka RM, et al. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999. doi:10.1016/S0043-1354(98)00475-8
  • Hasanin T, Ahmed S, Barakat T. Nano-chamomile waste as a low-cost biosorbent for rapid removal of heavy metal ions from natural water samples. Egypt J Chem. 2019. doi:10.21608/ejchem.2019.5921.1504
  • Kapashi E, Kapnisti M, Dafnomili A, et al. Aloe Vera as an effective biosorbent for the removal of thorium and barium from aqueous solutions. J Radioanal Nucl Chem. 2019. doi:10.1007/s10967-019-06558-x
  • Nazal MK, Al-Bayyari M, Khalili FI. Salvadora Persica branches biomass adsorbent for removal of uranium(VI) and thorium(IV) from aqueous solution: kinetics and thermodynamics study. J Radioanal Nucl Chem. 2019. doi:10.1007/s10967-019-06668-6
  • Alkaram UF, Mukhlis AA, Al-Dujaili AH. The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite. J Hazard Mater. 2009;169(1–3):324–332. doi:10.1016/j.jhazmat.2009.03.153.
  • Šabanović E, Muhić-Šarac T, Nuhanović M, et al. Biosorption of uranium(VI) from aqueous solution by citrus limon peels: kinetics, equlibrium and batch studies. J Radioanal Nucl Chem. 2019. doi:10.1007/s10967-018-6358-3
  • Sirry SM, Aldakhil F, Alharbi OML, et al. Chemically treated date stones for uranium (VI) uptake and extraction in aqueous solutions. J Mol Liq. 2019. doi:10.1016/j.molliq.2018.10.018
  • Yi Z, Liu J, Zeng R, et al. Removal of uranium(VI) from aqueous solution by Camellia oleifera shell-based activated carbon: adsorption equilibrium, kinetics, and thermodynamics. Water Sci Technol. 2020. doi:10.2166/wst.2020.504
  • Abd Ali LI, Wan Ibrahim WA, Sulaiman A, et al. New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples. Talanta. 2016. doi:10.1016/j.talanta.2015.10.062
  • Radi S, El Abiad C, Moura NM, et al. New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: synthesis, characterization, isotherms, kinetics and thermodynamics studies. J Hazard Mater. 2019. doi:10.1016/j.jhazmat.2017.10.058
  • Ramasamy DL, Wojtuś A, Repo E, et al. Ligand immobilized novel hybrid adsorbents for rare earth elements (REE) removal from waste water: assessing the feasibility of using APTES functionalized silica in the hybridization process with chitosan. Chemi Eng J. 2017. doi:10.1016/j.cej.2017.08.098
  • Zhang L, Zhang G, Wang S, et al. Sulfoethyl functionalized silica nanoparticle as an adsorbent to selectively adsorb silver ions from aqueous solutions. J Taiwan Inst Chem Eng. 2017. doi:10.1016/j.jtice.2017.01.001
  • Prasetyo, E, Toyoda K. Sol–gel synthesis of a humic acid-silica gel composite material as low-cost adsorbent for thorium and uranium removal. J Radioanal Nucl Chem. 2016. doi:10.1007/s10967-016-4861-y
  • Quiroga-Flores R, Noshad A, Wallenberg R, et al. Adsorption of cadmium by a high-capacity adsorbent composed of silicate-titanate nanotubes embedded in hydrogel chitosan beads. Environmental Technology (United Kingdom. 2020;41(23):3043–3054. doi:10.1080/09593330.2019.1596167.
  • Shi QX, Li Y, Wang L, et al. Preparation of supported chitosan adsorbent with high adsorption capacity for Titan Yellow removal. Int J Biol Macromol. 2020;152:449–455. doi:10.1016/j.ijbiomac.2020.02.265.
  • Tanhaei B, Ayati A, Iakovleva E, et al. Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: synthesis, characterization and adsorption study. Int J Biol Macromol. 2020;164:3621–3631. doi:10.1016/j.ijbiomac.2020.08.207.
  • Vareda JP, Durães L. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. Environ Technol (U. K.). 2019;40(4):529–541. doi:10.1080/09593330.2017.1397766.
  • Koopal LK, Yang Y, Minnaard AJ, et al. Chemical immobilisation of humic acid on silica. Colloids Surf A: Physicochemical Eng Aspects. 1998. doi:10.1016/S0927-7757(97)00170-2
  • Rajiv Gandhi M, Meenakshi S. Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). Int J Biol Macromol. 2012. doi:10.1016/j.ijbiomac.2012.01.012
  • Sri Juari S, Sundari S, Sudiono S, et al. A new type of adsorbent based on the immobilization of humic acid on chitin and its application to adsorb Cu(II). E-J Surf Sci Nanotechnol. 2006. doi:10.1380/ejssnt.2006.46
  • Di Foggia M, Taddei P, Torreggiani A, et al. Self-assembling peptides for biomedical applications: IR and Raman spectroscopies for the study of secondary structure biomaterials for dentistry and orthopaedics View project RM@Schools View project. Proteomics Res J. 2011;2(3):231–272. https://www.researchgate.net/publication/286101944.
  • El-Maghrabi HH, Younes AA, Salem AR, et al. Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater. 2019;378:120703. doi:10.1016/j.jhazmat.2019.05.096.
  • Meng F, Yuan G, Larson SL, et al. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite. J Environ Radioact. 2017. doi:10.1016/j.jenvrad.2017.09.019
  • Al-Anber MA, Al-Momani IF, Zaitoun MA, et al. Inorganic silica gel functionalized tris(2-aminoethyl)amine moiety for capturing aqueous uranium (VI) ion. J Radioanal Nucl Chem. 2020. doi:10.1007/s10967-020-07270-x
  • Prasetyo E. Humic acid provenance influence to the adsorption capacity in uranium and thorium removal. IOP Conf Ser: Mater Sci Eng. 2018;285(1). doi:10.1088/1757-899X/285/1/012011
  • Mellah A, Chegrouche S, Barkat M. The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci. 2006. doi:10.1016/j.jcis.2005.09.045
  • Huang G, Wang D, Ma S, et al. A new, low-cost adsorbent: preparation, characterization, and adsorption behavior of Pb(II) and Cu(II). J Colloid Interface Sci. 2015. doi:10.1016/j.jcis.2014.12.099
  • Al-Massaedh AA, Khalili FI. Removal of thorium(IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem. 2021;327(3):1201–1217. doi:10.1007/s10967-021-07614-1.
  • Ayawei N, Ebelegi N, Wankasi D. Modelling and interpretation of adsorption isotherms; 2017. doi:10.1155/2017/3039817
  • Prasetyo, E, Toyoda K. Solid phase extraction of thorium and uranium and their separation from lanthanides using Humic acid silica gel as a low-cost adsorbent. J Eng Technol Sci. 2017;49(4):508–519. doi:10.5614/j.eng.technol.sci.2017.49.4.6.
  • Younes Ahmed A, El-Maghrabi Heba H. Removal of lead ions from wastewater using novel Schiff-base functionalized solid-phase adsorbent. Separation Science and Technology. 2020;55(9):1589–1602. https://doi.org/10.1080/01496395.2019.1604758.
  • Baybaş D, Ulusoy U. The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl Clay Sci. 2011;51(1–2):138–146. doi:10.1016/j.clay.2010.11.020.
  • Yusan S, Gok C, Erenturk S, et al. Adsorptive removal of thorium (IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl Clay Sci. 2012;67–68:106–116. doi:10.1016/j.clay.2012.05.012.
  • Baybaş D, Ulusoy U. Polyacrylamide-hydroxyapatite composite: preparation, characterization and adsorptive features for uranium and thorium. J Solid State Chem. 2012;194:1–8. doi:10.1016/j.jssc.2012.07.039.
  • Rahmani-Sani A, Hosseini-Bandegharaei A, Hosseini SH, et al. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid. J Hazard Mater. 2015. doi:10.1016/j.jhazmat.2014.12.047
  • Djogić R, Branica M. Dissolved uranyl complexed species in artificial seawater. Mar Chem. 1991. doi:10.1016/S0304-4203(09)90058-5
  • Khalili F, Al-Banna G. Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from ajloun soil - Jordan. J Environ Radioact. 2015. doi:10.1016/j.jenvrad.2015.03.035
  • Erdogan Sait, Merdivan Melek, Hamamci Candan, etal. Polymer Supported Humic Acid for Separation and Preconcentration of Thorium(IV). Analyt Lett. 2004;37(12):2565–2575. https://doi.org/10.1081/AL-200031134.
  • Anirudhan T.S, Bringle C.D, Rijith S. Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. Desalin Water Treatment. 2012;12(1-3):16–27. https://doi.org/10.5004/dwt.2009.939.
  • Khalili Fawwaz I, Khalifa Alia’a, Al-Banna Ghadeer. Removal of uranium(VI) and thorium(IV) by insolubilized humic acid originated from Azraq soil in Jordan. J Radioanal Nucl Chemis. 2017;311(2):1375–1392. https://doi.org/10.1007/s10967-016-5031-y.
  • Singhal P, Jha SK, Pandey SP, et al. Rapid extraction of uranium from sea water using Fe3O4 and humic acid coated Fe3O4 nanoparticles. J Hazard Mater. 2017. doi:10.1016/j.jhazmat.2017.04.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.