489
Views
0
CrossRef citations to date
0
Altmetric
Articles

Environmental advantages of coproducing beef meat in dairy systems

, &
Pages 446-465 | Received 06 Apr 2021, Accepted 21 Aug 2021, Published online: 10 Sep 2021

References

  • Abín R, Laca A, Laca A, et al. Environmental assessment of intensive egg production: A Spanish case study. J Clean Prod. 2018;179:160–168. doi:10.1016/j.jclepro.2018.01.067.
  • Angerer V, Sabia E, Köning von Borstel U, et al. Environmental and biodiversity effects of different beef production systems. J Environ Manage. 2021;289:112523. doi:10.1016/j.jenvman.2021.112523.
  • Alvarez-Hess PS, Little SM, Moate PJ, et al. A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle. Agric Syst. 2019;169:14–23. doi:10.1016/j.agsy.2018.11.008.
  • Andretta I, Remus A, Franceschi CH, et al. Environmental impacts of feeding crops to poultry and pigs in environmental impact of agro-food industry and food consumption. In: CM Galanakis, editor. Environmental impact of agro-food industry and food consumption. London: Academic Press; 2021. p. 59–80.
  • Baldini C, Gardoni D, Guarino M. A critical review of the recent evolution of life cycle assessment applied to milk production. J Clean Prod. 2017;140:421–435. doi:10.1016/j.jclepro.2016.06.078.
  • Beauchemin KA, Janzen HH, Little SM, et al. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric Syst. 2010;103:371–379. doi:10.1016/j.agsy.2010.03.008.
  • Beauchemin KA, Janzen HH, Little SM, et al. Mitigation of greenhouse gas emissions from beef production in western Canada - evaluation using farm-based life cycle assessment. Anim Feed Sci Tech. 2011;166–167:663–677. doi:10.1016/j.anifeedsci.2011.04.047.
  • Bilotto F, Recavarren P, Vibart R, et al. Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the flooding Pampas of Argentina. Agric Syst. 2019;176:102688. doi:10.1016/j.agsy.2019.102688.
  • Bonesmo H, Beauchemin KA, Harstad OM, et al. Greenhouse gas emission intensities of grass silage based dairy and beef production: A systems analysis of Norwegian farms. Livest Sci. 2013;152:239–252. doi:10.1016/j.livsci.2012.12.016.
  • Bragaglio A, Napolitano F, Pacelli C, et al. Environmental impacts of Italian beef production: A comparison between different systems. J Clean Prod. 2018;172:4033–4043. doi:10.1016/j.jclepro.2017.03.078.
  • Breton C, Blancher P, Amor B, et al. Assessing the climate change impacts of biogenic carbon in buildings: a critical review of two main dynamic approaches. Sustainability. 2018;10:1–30. doi:10.3390/su10062020.
  • Buckwell A, Nadeu E. (2018). What is the safe operating space for EU livestock? RISE Foundation, Brussels. https://risefoundation.eu/wp-content/uploads/2020/07/2018_RISE_Livestock_Full.pdf.
  • Buratti C, Fantozzi F, Barbanera M, et al. Carbon footprint of conventional and organic beef production systems: An Italian case study. Sci Total Environ. 2017;576:129–137. doi:10.1016/j.scitotenv.2016.10.075.
  • Bureš D, Bartoň L. Performance, carcass traits and meat quality of Aberdeen Angus, gascon, Holstein and Fleckvieh finishing bulls. Livest Sci. 2018;214:231–237. doi:10.1016/j.livsci.2018.06.017.
  • Canellada F, Laca A, Laca A, et al. Environmental impact of cheese production: A case study of a small-scale factory in Southern Europe and global overview of carbon footprint. Sci Total Environ. 2018;635:167–177. doi:10.1016/j.scitotenv.2018.04.045.
  • Cardoso AS, Berndet A, Leytem A, et al. Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agric Syst. 2016;143:86–96. doi:10.1016/j.agsy.2015.12.007.
  • Casey JW, Holden NM. Quantification of GHG emissions from sucker-beef production in Ireland. Agric Syst. 2006;90:79–98. doi:10.1016/j.agsy.2005.11.008.
  • Cederberg C, Stadig M. System expansion and allocation in life cycle assessment of milk and beef production. Int J LCA. 2003;8:350–356. doi:10.1007/BF02978508.
  • Cerri CC, Moreira CS, Alves PA, et al. Assessing the carbon footprint of beef cattle in Brazil: a case study with 22 farms in the State of mato grosso. J Clean Prod. 2016;112:2593–2600. doi:10.1016/j.jclepro.2015.10.072.
  • Cole NA, Parker DB, Brown MS, et al. Effects of steam flaking on the carbon footprint of finishing beef cattle. Transl Anim Sci 2020;4:S84–S89. doi:10.1093/tas/txaa110.
  • Chen Z, An C, Fang H, et al. Assessment of regional greenhouse gas emission from beef cattle production: A case study of Saskatchewan. Canada J Environ Manage. 2020;264, Article 110443. doi:10.1016/j.jenvman.2020.110443.
  • Clune S, Crossin E, Verghese K. Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod. 2017;140:766–783. doi:10.1016/j.jclepro.2016.04.082.
  • Cooper J, Diesburg S, Babej A, et al. Life cycle assessment of products from alaskan salmon processing wastes: implications of coproduction, intermittent landings, and storage time. Fish Res. 2014;151:26–38. doi:10.1016/j.fishres.2013.11.015.
  • Crosson P, Shalloo L, O’Brien D, et al. A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Anim Feed Sci Tech. 2011;166–167:29–45. doi:10.1016/j.anifeedsci.2011.04.001.
  • Cucurachi S, Scherer L, Guinée J, et al. Life cycle assessment of food systems. One Earth. 2019;1:292–297. doi:10.1016/j.oneear.2019.10.014.
  • De Figueiredo EB, Javasundara S, Bordonal RO, et al. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J Clean Prod. 2017;142:420–431. doi:10.1016/j.jclepro.2016.03.132
  • De Oliveira G, Bourscheidt DS. Multi-sectorial convergence in greenhouse gas emissions. J Environ Manage. 2017;196:402–410. doi:10.1016/j.jenvman.2017.03.034.
  • De Souza NRD, Fracarolli JA, Junqueira TL, et al. Sugarcane ethanol and beef cattle integration in Brazil. Biomass Bioenerg. 2019;120:448–457. doi:10.1016/j.biombioe.2018.12.012.
  • De Vries M, de Boer IJM. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest Sci. 2010;128:1–11. doi:10.1016/j.livsci.2009.11.007.
  • De Vries M, van Middelaar CE, de Boer IJM. Comparing environmental impacts of beef production systems: A review of life cycle assessments. Livest Sci. 2015;178:279–288. doi:10.1016/j.livsci.2015.06.020.
  • Del Prado A, Mas K, Pardo G, et al. Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Sci Total Environ. 2013;465:156–165. doi:10.1016/j.scitotenv.2013.03.064.
  • Dick M, da Silva MA, Dewes H. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J Clean Prod. 2015;961:426–434. doi:10.1016/j.jclepro.2014.01.080.
  • Dopelt K, Radon P, Davidovitch N. Environmental effects of the livestock industry: the relationship between knowledge, attitudes, and behavior among students in Israel. Int J Environ Res Public Health. 2019;16:1–16. doi:10.3390/ijerph16081359.
  • Dudley QM, Liska AJ, Watson AK, et al. Uncertainties in life cycle greenhouse gas emissions from U.S. beef cattle. J Clean Prod. 2014;75:31–39. doi:10.1016/j.jclepro.2014.03.087.
  • FAO. (2021). OECD-FAO Agricultural Outlook 2019-2028: http://www.fao.org/ (accessed 3 May 2021).
  • Fathollahi H, Mousavi-Avval SH, Akram A, et al. Comparative energy, economic and environmental analyses of forage production systems for dairy farming. J Clean Prod. 2018;182:852–862. doi:10.1016/j.jclepro.2018.02.073.
  • Florindo TJ, Florindo GIB, Talamini E, et al. Application of the multiple criteria decision-making (MCDM) approach in the identification of carbon footprint reduction actions in the Brazilian beef production chain. J Clean Prod. 2018;196:1379–1389. doi:10.1016/j.jclepro.2018.06.116.
  • Flysjö A, Cederberg C, Henriksson M, et al. The interaction between milk and beef production and emissions from land use change – critical considerations in life cycle assessment and carbon footprint studies of milk. J Clean Prod. 2012;28:134–142. doi:10.1016/j.jclepro.2011.11.046.
  • FoodPrint. (2021). https://foodprint.org/ (accessed 3 May 2021).
  • Gollnow S, Lundie S, Moore AD, et al. Carbon footprint of milk production from dairy cows in Australia. Int Dairy J. 2014;37:31–38. doi:10.1016/j.idairyj.2014.02.005.
  • González-Quintero R, Bolívar-Vergara DM, Chirinda N, et al. Environmental impact of primary beef production chain in Colombia: carbon footprint, non-renewable energy and land use using life cycle assessment. Sci Total Environ. 2021;773:145573. doi:10.1016/j.scitotenv.2021.145573.
  • Harrison MT, McSweeney C, Tomkins NW, et al. Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using leucaena leucocephala. Agric Syst. 2015;136:138–146. doi:10.1016/j.agsy.2015.03.003.
  • Hennessy D, Delaby L, Van den Pol-van Dasselaar A, et al. Increasing grazing in dairy cow milk production systems in Europe. Sustainability. 2020;12:1–15. doi:10.3390/su12062443.
  • Herrero M, Laca A, Laca A, et al. Application of life cycle assessment to food industry wastes. In: MR Kosseva, C Webb, editor. Food industry wastes (second edition). London: Academic Press; 2020. p. 331–353. doi:10.1016/B978-0-12-817121-9.00015-2
  • Horrillo A, Gaspar P, Escribano M. Organic farming as a strategy to reduce carbon footprint in dehesa agroecosystems: a case study comparing different livestock products. Animals (Basel). 2020;162:1–22. doi:10.3390/ani1001016.
  • Huerta AR, Güereca LP, Lozano MSR. Environmental impact of beef production in Mexico through life cycle assessment. Resour Conserv Recy. 2016;109:44–53. doi:10.1016/j.resconrec.2016.01.020.
  • Hünerberg M, Little SM, Beauchemin KA, et al. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agric Sys. 2014;127:19–27. doi:10.1016/j.agsy.2014.01.005.
  • IDF. (2015) Bulletin of the International Dairy Federation 479/2015.
  • IPCC Guidelines for National Greenhouse Gas Inventories. (2006). https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed 11 October 2019).
  • ITER: Technological Institute of Renewable Energies (Spain). (2008). http://www.iter.es/ (accessed 15 September 2019).
  • Jeswani HK, Espinoza-Orias N, Croker T, et al. Life cycle greenhouse gas emissions from integrated organic farming: A systems approach considering rotation cycles. Sustain Prod Consum. 2018;13:60–79. doi:10.1016/j.spc.2017.12.003.
  • Kiggundu N, Ddungu SP, Wanyama J, et al. Greenhouse gas emissions from Uganda's cattle corridor farming systems. Agric Syst. 2019;176:102649. doi:10.1016/j.agsy.2019.102649.
  • Kinley RD, Martínez-Fernández G, Matthews MK, et al. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J Clean Prod 2020;259:120836. doi:10.1016/j.jclepro.2020.120836
  • Kovacs B, Miller L, Heller MC, et al. The carbon footprint of dietary guidelines around the world: a seven country modeling study. Nutr J. 2021;20(1):15, doi:10.1186/s12937-021-00669-6.
  • Kristensen T, Mogensen L, Knudsen MT, et al. Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach. Livest Sci. 2011;140:136–148. doi:10.1016/j.livsci.2011.03.002.
  • Laca A, Gómez N, Laca A, et al. Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain. Environ Sci Pollut Res. 2020a;27:1650–1666. doi:10.1007/s11356-019-06857-6.
  • Laca A, Gómez N, Rodríguez A, et al. Environmental performance of semi-confinement and pasture based systems for dairy cows from a life cycle assessment perspective. Environ Eng Manag J. 2020b;19:1199–1208.
  • Laca A, Laca A, Diaz M. Environmental impact of poultry farming and egg production. In: CM Galanakis, editor. Environmental impact of agro-food industry and food consumption. London: Academic Press; 2021. p. 81–100. doi:10.1016/j.jclepro.2018.01.067.
  • Lehmann N, Briner S, Finger R. The impact of climate and price risks on agricultural land use and crop management decisions. Land Use Pol. 2013;35:119–130. doi:10.1016/j.landusepol.2013.05.008.
  • Li S, Qin Y, Subbiah J, et al. Life cycle assessment of the U.S. beef processing through integrated hybrid approach. J Clean Prod. 2020;265:121813. doi:10.1016/j.jclepro.2020.121813.
  • Lynch J. Availability of disaggregated greenhouse gas emissions from beef cattle production: A systematic review. Environ Impact Assess Rev. 2019;76:69–78. doi:10.1016/j.eiar.2019.02.003.
  • MAPA: Ministry of Agriculture, Fisheries and Food (Spain). (2020). https://www.mapa.gob.es/es/ (accessed 28 April 2020).
  • Marton SMRR, Zimmermann A, Kreuzer M, et al. Comparing the environmental performance of mixed and specialised dairy farms: the role of the system level analysed. J Clean Prod. 2016;124:73–83. doi:10.1016/j.jclepro.2016.02.074.
  • McAuliffe GA, Takahashi T, Orr RJ, et al. Distributions of emissions intensity for individual beef cattle reared on pasture-based production systems. J Clean Prod. 2018;171:1672–1680. doi:10.1016/j.dib.2018.01.075.
  • McGeough EJ, Little SM, Janzen HH, et al. Life-cycle assessment of greenhouse gas emissions from dairy production in eastern Canada: A case study. J Dairy Sci. 2012;95:5164–5175. doi:10.3168/jds.2011-5229.
  • Misselbrook TH, Van Der Weerden TJ, Pain BF, et al. Ammonia emission factors for UK agriculture. Atmos Environ. 2000;34:871–880. doi:10.1016/S1352-2310(99)00350-7.
  • Moberg E, Säll S, Hansson PA, et al. Taxing food consumption to reduce environmental impacts - Identification of synergies and goal conflicts. Food Policy. 2021;101:102090. doi:10.1016/j.foodpol.2021.102090.
  • Modernel P, Dogliotti S, Alvarez S, et al. Identification of beef production farms in the Pampas and campos area that stand out in economic and environmental performance. Ecol Indic. 2018;89:755–770. doi:10.1016/j.ecolind.2018.01.038.
  • Mogensen L, Kristensen T, Nielsen NI, et al. Greenhouse gas emissions from beef production systems in Denmark and Sweden. Livest Sci. 2015;174:126–143. doi:10.1016/j.livsci.2015.01.021.
  • Molossi L, Hoshide AK, Pedrosa LM, et al. Improve pasture or feed grain? greenhouse gas emissions, profitability, and resource use for nelore beef cattle in Brazil’s cerrado and Amazon biomes. Animals (Basel). 2020;1386:1–21. doi:10.3390/ani10081386.
  • Morel K, Farrié JP, Renon J, et al. Environmental impacts of cow-calf beef systems with contrasted grassland management and animal production strategies in the Massif Central, France. Agric Syst. 2016;144:133–143. doi:10.1016/j.agsy.2016.02.006.
  • Moset V, Wahid R, Ward A, et al. Modelling methane emission mitigation by anaerobic digestion: effect of storage conditions and co-digestion. Environ Technol. 2019;40(20):2633–2642. doi:10.1080/09593330.2018.1447999.
  • Murphy B, Crosson P, Kelly AK, et al. An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems. Agric Syst. 2017;154:124–132. doi:10.1016/j.agsy.2017.03.007.
  • Navarrete-Molina C, Meza-Herrera CA, Herrera-Manduza MA, et al. To beef or not to beef: unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region. J Clean Prod. 2019;231:1027–1035. doi:10.1016/j.jclepro.2019.05.267.
  • Nieto MI, Barrantes O, Privitello L, et al. Greenhouse Gas emissions from beef grazing systems in semi-arid rangelands of central Argentina. Sustainability. 2018;10:4228. doi:10.3390/su10114228.
  • Noya I, González-García S, Berzosa J, et al. Environmental and water sustainability of milk production in Northeast Spain. Sci Total Environ. 2018;616–617:1317–1329. doi:10.1016/j.scitotenv.2017.10.186.
  • Nguyen TLT, Hermansen JE, Mogensen L. Environmental consequences of different beef production systems in the EU. J Clean Prod. 2010;18:756–766. doi:10.1016/j.jclepro.2009.12.023.
  • Ogino A, Orito H, Shimada K, et al. Evaluating environmental impacts of the Japanese beef cow–calf system by the life cycle assessment method. Anim Sci J. 2007;78:424–432. doi:10.1111/j.1740-0929.2007.00457.x.
  • Parera i Pous J, Mallol Nabot C, Domingo Olivé F, et al. (2010). In situ rapid determination of the nutrients in dairy cattle slurry based on the electrical conductivity (EC) for correct fertilization. II Spanish Congress of Integral Management of Livestock Manure (Congress Proceedings) (in Spanish).
  • Payen S, Falconer S, Carlson B, et al. Eutrophication and climate change impacts of a case study of New Zealand beef to the European market. Sci Total Environ. 2020;710:136120. doi:10.1016/j.scitotenv.2019.136120.
  • Pelletier N, Piroq R, Rasmunssen R. Comparative life cycle environmental impacts of three beef production strategies in the upper midwestern United States. Agric Syst. 2010;103:380–389. doi:10.1016/j.agsy.2010.03.009.
  • Pereira CH, Patino HO, Hoshide AK, et al. Grazing supplementation and crop diversification benefits for southern Brazil beef: A case study. Agric Syst. 2018;162:1–9. doi:10.1016/j.agsy.2018.01.009.
  • Pechey R, Hollands GJ, Marteau TM. Are meat options preferred to comparable vegetarian options? An experimental study. BMC Res Notes. 2021;14(37):1–5. doi:10.1186/s13104-021-05451-9.
  • Petrovic Z, Djordjevic V, Milicevic D, et al. Meat production and consumption: environmental consequences. Procedia Food Sci. 2015;5:235–238. doi:10.1016/j.profoo.2015.09.041.
  • Picasso VD, Modernel PD, Becoña G, et al. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay. Meat Sci. 2014;98:346–354. doi:10.1016/j.meatsci.2014.07.005.
  • Reşitoğlu İA, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust after treatment systems. Clean Techn Environ Policy. 2015;17:15–27. doi:10.1007/s10098-014-0793-9.
  • Roer AG, Johansen A, Bakken AK, et al. Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries. Livest Sci. 2013;155:384–396. doi:10.1016/j.livsci.2013.05.004.
  • Roy P, Orikasa T, Thammawong M, et al. Life cycle of meats: An opportunity to abate the greenhouse gas emission from meat industry in Japan. J Environ Manage. 2012;93:218–224. doi:10.1016/j.jenvman.2011.09.017.
  • Ruviaro CF, de Leis CM, Lampert VDN, et al. Carbon footprint in different beef production systems on a southern Brazilian farm: a case study. J Clean Prod. 2015;96:435–443. doi:10.1016/j.jclepro.2014.01.037.
  • Salami SA, Luciano G, O’Grady MN, et al. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim Feed Sci Tech. 2019;251:37–55. doi:10.1016/j.anifeedsci.2019.02.006.
  • Samsonstuen S, Åby BA, Crosson P, et al. Farm scale modelling of greenhouse gas emissions from semi-intensive suckler cow beef production. Agric Syst. 2019;176:102670. doi:10.1016/j.agsy.2019.102670.
  • Saetrens W, Smetana S, Van Campenhout L, et al. Life cycle assessment of burger patties produced with extruded meat substitutes. J Clean Prod. 2021;306:127177. doi:10.1016/j.jclepro.2021.127177.
  • Sokolov VK, VanderZaag A, Habtewold J, et al. Dairy manure acidification reduces CH4 emissions over short and long-term. Environ Technol. 2021;42(18):2797–2804. doi:10.1080/09593330.2020.1714744.
  • Stackhouse-Lawson K, Rotz C, Oltjen J, et al. Carbon footprint and ammonia emissions of California beef production systems. J Anim Sci. 2012;90:4641–4655. doi:10.2527/jas.2011-4653.
  • STATISTA. (2020). https://www.statista.com/ (accessed 14 April 2020).
  • Tichenor NE, Peters CJ, Norris GA, et al. Life cycle environmental consequences of grass-fed and dairy beef production systems in the northeastern United States. J Clean Prod. 2017;142:1619–1628. doi:10.1016/j.jclepro.2016.11.138.
  • Vasconcelos K, Farinha M, Bernardo L, et al. Livestock-derived greenhouse gas emissions in a diversified grazing system in the endangered Pampa biome, southern Brazil. Land Use Pol. 2018;75:442–448. doi:10.1016/j.landusepol.2018.03.056.
  • Vellinga TV, de Vries M. Effectiveness of climate change mitigation options considering the amount of meat produced in dairy systems. Agric Syst. 2018;162:136–144. doi:10.1016/j.agsy.2018.01.026.
  • Vergé XPC, Dyer JA, Desjardins RL, et al. Greenhouse gas emissions from the Canadian beef industry. Agric Syst. 2008;98:126–134. doi:10.1016/j.agsy.2008.05.003.
  • Wiedermann S, McGahan EJ, Murphy CM, et al. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J Clean Prod. 2015a;94:67–75. doi:10.1016/j.jclepro.2015.01.073.
  • Wiedermann S, Henry B, McGahan EJ, et al. Resource use and greenhouse gas intensity of Australian beef production: 1981-2010. Agric Syst. 2015b;133:109–118. doi:10.1016/j.agsy.2014.11.002.
  • Van der Velden R, da Fonseca-Zang W, Zang J, et al. Closed-loop organic waste management systems for family farmers in Brazil. Environ Technol. 2021. doi:10.1080/09593330.2021.1871660
  • Yang Y, Meng G. The evolution and research framework of carbon footprint: based on the perspective of knowledge mapping. Ecol Indic. 2020;112:106125. doi:10.1016/j.ecolind.2020.106125.
  • Zehetmeier M, Hoffmann H, Sauer J, et al. A dominance analysis of greenhouse gas emissions, beef output and land use of German dairy farms. Agric Syst. 2014;129:55–67. doi:10.1016/j.agsy.2014.05.006.
  • Zucali M, Tamburini A, Sandrucci A, et al. Global warming and mitigation potential of milk and meat production in Lombardy (Italy). J Clean Prod. 2017;153:474–482. doi:10.1016/j.jclepro.2016.11.037.
  • Zucali M, Bacenetti J, Tamburini A, et al. Environmental impact assessment of different cropping systems of home-grown feed for milk production. J Clean Prod. 2018;172:3734–3746. doi:10.1016/j.jclepro.2017.07.048.
  • Westhoek Henk, Peter Lesschen Jan, Rood Trudy, etal Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environ Change. 2014;26:196–205. doi:10.1016/j.gloenvcha.2014.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.