249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of performance and sulfur resistance of Si-doped V/W/Ti using sulfation for selective catalytic reduction of NOx with ammonia

, &
Pages 600-618 | Received 19 Feb 2021, Accepted 20 Aug 2021, Published online: 04 Oct 2021

References

  • Beeck JO, Thompson J, Booth N. Upcoming Emission Regulations for Passenger Cars: Impact on SCR System Requirements and Developments. (2013).
  • Guan B, Zhan R, Lin H, et al. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl Therm Eng. 2014;66(1-2):395–414.
  • Gao R, Zhang D, Liu X, et al. Enhanced catalytic performance of V2O5–WO3/Fe2O3/TiO2 microspheres for selective catalytic reduction of NO by NH3. Catal Sci Technol. 2013;3(1):191–199.
  • Chen L, Si Z, Wu X, et al. DRIFT study of CuO–CeO2–TiO2 mixed oxides for NOx reduction with NH3 at Low temperatures. ACS Appl Mater Interfaces. 2014;6(11):8134–8145.
  • Giraud F, Couble J, Geantet C, et al. Experimental microkinetic approach of De-NOx by NH3 on V2O5/WO3/TiO2 catalysts. 4. individual heats of adsorption of adsorbed H2O species on sulfate-free and sulfated TiO2 supports. J Phys Chem C. 2015;119(28):16089–16105.
  • Kompio PGWA, Brückner A, Hipler F, et al. A new view on the relations between tungsten and vanadium in V2O5WO3/TiO2 catalysts for the selective reduction of NO with NH3. J Catal. 2012;286:237–247.
  • Liu J, Zhen Z, Xu C, et al. Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis. Chinese J Cat. 2019;40(10):1438–1487.
  • Liu J, Cheng H, Tan J, et al. Solvent-free rapid synthesis of porous CeWOx by a mechanochemical self-assembly strategy for the abatement of NOx. J Mater Chem A. 2020;8(14):6717–1732.
  • Shi A, Wang X, Yu T, et al. The effect of zirconia additive on the activity and structure stability of V2O5/WO3-TiO2 ammonia SCR catalysts. Appl Catal B: Environ. 2011;106(3-4):359–369.
  • Liu X, Wu X, Xu T, et al. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst. Chinese J Cat. 2016;37(8):1340–1346.
  • Casanova M, Schermanz K, Llorca J, et al. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2WO3SiO2. Catal Today. 2012;184(1):227–236.
  • Kobayashi M, Kuma R, Masaki S, et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Appl Catal B: Environ. 2005;60(3-4):173–179.
  • Jossen R, Heine MC, Pratsinis SE, et al. Thermal stability and catalytic activity of flame-made silica–vanadia–tungsten oxide–titania. Appl Catal B: Environ. 2007;69(3-4):181–188.
  • Alemany LJ, Berti F, Busca G, et al. Characterization and composition of commercial V2O5&z. sbnd; WO3&z. sbnd; TiO2 SCR catalysts. Appl Cat B: Environ. 1996;10(4):299–311.
  • Cho SM. Properly apply selective catalytic reduction for NOx removal. Chem Eng Prog. 1994;90:39–45.
  • Cheng JP, Yang RT. Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia. Appl Catal A. 1992;80(1):135–148.
  • Dunn JP, Koppula PR, Stenger HG, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B: Environ. 1998;19(2):103–117.
  • Phil HH, Reddy MP, Kumar PA, et al. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Appl Catal B: Environ. 2008;78(3-4):301–308.
  • Matsuda S, Kamo T, Kato A, et al. Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia. Ind Eng Chem Pro Res Develop. 1982;21(1):48–52.
  • Schwaemmle T, Heidel B, Brechtel K, et al. Study of the effect of newly developed mercury oxidation catalysts on the DeNOx-activity and SO2–SO3-conversion. Fuel. 2012;101:179–186.
  • Svachula J, Alemany LJ, Ferlazzo N, et al. Oxidation of sulfur dioxide to sulfur trioxide over honeycomb DeNoxing catalysts. Ind Eng Chem Res. 1993;32(5):826–834.
  • Yang S, Guo Y, Chang H, et al. Novel effect of SO2 on the SCR reaction over CeO2: mechanism and significance. Appl Catal B: Environ. 2013;136:19–28.
  • Xu W, He H, Yu Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3. J Phys Chem C. 2009;113(11):4426–4432.
  • Maqbool MS, Pullura AK, Ha HP. Novel sulfation effect on low-temperature activity enhancement of CeO2-added Sb-V2O5/TiO2 catalyst for NH3-SCR. Appl Cat B: Environ. 2012;152:28–37.
  • Chang H, Ma L, Yang S, et al. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J Hazard Mater. 2013;262:782–788.
  • Baraket L, Ghorbel A, Grange P. Selective catalytic reduction of NO by ammonia on V2O5–SO42−/TiO2 catalysts prepared by the sol–gel method. Appl Cat B: Environ. 2007;72(1-2):37–43.
  • Forzatti P, Lietti L. Recent Advances in Denoxing Catalysis. Hetero Chem Rev. 1996;3:33–52.
  • Liu Z, Woo SI. Recent advances in catalytic DeNOx science and technology. Catal Rev. 2006;48 (1):43–89.
  • Kobayashi M, Kuma R, Morita A. Low temperature selective catalytic reduction of NO by NH3 over V2 O5 supported on TiO2–SiO2–MoO3. Catal Letter. 2006;112(1):37–44.
  • Kobayashi M, Hagi M. V2O5-WO3/TiO2-SiO2-SO42− catalysts: influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2. Appl Cat B: Environ. 2006;63(1-2):104–113.
  • Liu C, Chen L, Li J, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2–SiO2 for the selective catalytic reduction of NO by NH3. Environ Sci Technol. 2012;46(11):6182–6189.
  • Zhou J, Guo R, Zhang X, et al. Cerium oxide-based catalysts for Low-temperature selective catalytic reduction of NOx with NH3: A review. Energy Fuels. 2021;35(4):2981–2998.
  • Yu Y, Tan W, An D, et al. Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: A collaborated experimental and DFT study. Applied Catalysis B: Environ. 2021;281:119544.
  • Liu J, Guo R, Li M, et al. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel. 2018;223:385–393.
  • Wang B, Wang M, Han L, et al. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for Low-temperature NH3-SCR of NO. ACS Catal. 2020;10(16):9034–9045.
  • Kang L, Han L, Wang P, et al. SO2-Tolerant NOx reduction by marvelously suppressing SO2 adsorption over FeδCe1−δVO4 catalysts. Environ Sci Technol. 2020;54:14066–14075.
  • Kang L, Han L, He J, et al. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2–WO3 catalysts. Environ Sci Technol. 2019;53 (2):938–945.
  • Han L, Gao M, Feng C, et al. Fe2O3–CeO2@Al2O3 nanoarrays on Al-mesh as SO2-Tolerant Monolith catalysts for NOx reduction by NH3. Environ Sci Technol. 2019;53(10):5946–5956.
  • Han L, Gao M, Hasegawa J, et al. SO2-Tolerant selective catalytic reduction of NOx over meso-TiO2@Fe2O3@Al2O3 metal-based Monolith catalysts. Environ Sci Technol. 2019;53:6462–6473.
  • Wachs IE. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal Today. 1996;27(3-4):437–455.
  • Kwon DW, Park KH, Ha HP, et al. The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR. Appl Surf Sci. 2019;481:1167–1177.
  • Ramis G, Busca G, Bregani F. Optical wavelet matched filters for shift-invariant pattern recognition. Catal Letter. 1993;18(4):299–303.
  • Kwon DW, Hong SC. Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia. RSC adv. 2016;6(2):1169–1181.
  • Alfonsetti R, Simone GD, Lozzi L, et al. Siox surface stoichiometry by XPS: A comparison of various methods. Surf Interface Analysis. 1994;22(1-12):89–92.
  • Zhong Y, Qiu X, Gao J, et al. Chemical structure of Si–O in silica fume from ferrosilicon production and Its reactivity in Alkali dissolution. ISIJ Int. 2019;59(6):1098–1104.
  • Wang CZ, Yang SJ, Chang HZ, et al. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: acidity, surface species and catalytic activity. Chem Eng J. 2013;225:520–527.
  • Yang S, Guo Y, Chang H, et al. Novel effect of SO2 on the SCR reaction over CeO2: mechanism and significance. Appl Catal B: Environ. 2013;136-137:19–28.
  • Romano EJ, Schulz KH. A XPS investigation of SO2 adsorption on ceria–zirconia mixed-metal oxides. Appl Surf Sci. 2005;246(1-3):262–270.
  • Fang J, Bi X, Si D, et al. Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl Surf Sci. 2007;253(22):8952–8961.
  • Liu X, Chen H, Wu X, et al. Effects of SiO2 modification on the hydrothermal stability of the V2O5/WO3–TiO2 NH3-SCR catalyst: TiO2 structure and vanadia species. Catal Sci Technol. 2019;9(14):3711–3720.
  • Gu T, Liu Y, Weng X, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal Commun. 2010;12(4):310–313.
  • Li Q, Yang H, Qiu F, et al. Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal. J Hazard Mater. 2011;192(2):915–921.
  • Busca G, Lietti L, Ramis G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B: Environ. 1998;18(1-2):1–36.
  • Chang H, Ma L, Yang S, et al. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR. J Hazard Mater. 2013;262:782–788.
  • Kwon DW, Nam KB, Hong SC. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3. Appl Catal B: Environ. 2015;166:37–44.
  • Hao Z, Shen Z, Li Y, et al. The role of Alkali metal in α-MnO2 catalyzed ammonia-selective catalysis. Angew Chem. 2019;58:6351–6356.
  • Kwon DW, Park KH, Hong SC. Influence of VOx surface density and vanadyl species on the selective catalytic reduction of NO by NH3 over VOx/TiO2 for superior catalytic activity. Appl Catal A: gen. 2015;499:1–12.
  • Pabón E, Retuert J, Quijada R, et al. Tio2–SiO2 mixed oxides prepared by a combined sol–gel and polymer inclusion method. Micro Meso Mater. 2004;67(2-3):195–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.