291
Views
19
CrossRef citations to date
0
Altmetric
Articles

Simulation and prediction of the attenuation behaviour of the KNN–LMN–based lead-free ceramics by FLUKA code and artificial neural network (ANN)–based algorithm

, &
Pages 1592-1599 | Received 13 Aug 2021, Accepted 31 Oct 2021, Published online: 22 Apr 2023

References

  • Khabaz R, Boodaghi R, Benam MR, et al. Estimation of photoneutron dosimetric characteristics in organs/tissues using an improved simple model of linac head. Appl Radiat Isot. 2018;133:88–94.
  • Boodaghi MR, Khabaz R, Benam MR, et al. Feasibility study to reduce the contamination of photoneutrons and photons in organs/tissues during radiotherapy. Iran J Med Phys. 2019;17:366–373.
  • Mohammadi N, Miri- Hakimabad H, Rafat-motavalli L, et al. 25 Patient-specific voxel phantom dosimetry during the prostate treatment with high-energy linac. J Radioanal Nucl Chem. 2015;304:785–792.
  • Naseri A, Mesbahi A. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Rep Pract Oncol Radiother. 2010;15:138–144.
  • Altunsoy EE, Tekin HO, Mesbahi A, et al. MCNPX simulation for radiation dose absorption of anatomical regions and some organs. Acta Phys Pol A. 2020;137:561–565.
  • Günay O, Sarihan M, Yarar O, et al. Measurement of radiation dose in thyroid scintigraphy. Acta Phys Pol A. 2020;137:569–573.
  • Akkurt I. Effective atomic and electron numbers of some steels at different energies. Ann Nucl Energy. 2009;36:1702–1705.
  • Sarihan M, Boodaghi Malidarre R, Akkurt I. An extensive study on the neutron-gamma shielding and mass stopping power of (70-x) CRT–30K2O–xBaO glass system for 252Cf neutron source. Environ Technol. 2021: 1–11.
  • Boodaghi MR, Akkurt I. A Monte Carlo study on attenuation characteristics of colemanite-and barite-containing resources irradiated by 252Cf source against neutron–gamma photon. Polym Bull. 2021: 1–28.
  • Boodaghi MR, Akkurt I. Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J Mater Sci: Mater Electron. 2021;32:11666–11682.
  • Boodaghi MR, Akkurt I, Kavas T. Monte Carlo simulation on shielding properties of neutron-gamma from 252Cf source for alumino-boro-silicate glasses. Radiat Phys Chem. 2021;186:109540.
  • Akkurt I, Boodaghi Malidarre R. Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code. Radiat Eff Defects Solids. 2021: 1–13.
  • Elazaka AI, Zakaly HMH, Issa AM, et al. New approach to removal of hazardous bypass cement dust (BCD) from the environment: 20Na2O-20BaCl2-(60-x)B2O3-(x)BCD glass system and optical, mechanical, structural and nuclear radiation shielding competences. J Hazard Mater. 2021;403:123738.
  • Mostafa AMA, Zakaly HMH, Al-Ghamdi SA, et al. Pbo–Sb2O3–B2O3–CuO glassy system: evaluation of optical, gamma and neutron shielding properties. Mater Chem Phys. 2021;258:123937.
  • Akkurt I, Basyigit C, Kilincarslan S, et al. Radiation shielding of concretes containing different aggregates. Cem Concr Compos. 2006;28:153–157.
  • Rashad M, Saudi HA, Zakaly HMH, et al. Control optical characterizations of Ta+5–doped B2O3–Si2O–CaO–BaO glasses by irradiation dose. Opt Mater (Amst). 2021;112:110613.
  • Akkurt I, Boodaghi Malidarre R, Kavas T. Monte Carlo simulation of radiation shielding properties of the glass system containing Bi2O3. Eur Phys J Plus. 2021;136:264.
  • Kulali F. Simulation studies on the radiological parameters of marble concrete. Emerg Mater Res. 2020;9:1341–1347. DOI:10.1680/jemmr.20.00307.
  • Akkurt I, Malidarre B, I Kartal R, et al. Monte Carlo simulations study on gamma ray–neutron shielding characteristics for vinyl ester composites. Polym Compos. 2021;42:4764–4774.
  • Çelen YY, Evcin A. Synthesis and characterizations of magnetite–borogypsum for radiation shielding. Emerg Mater Res. 2021;9:770–775. DOI:10.1680/jemmr.20.00098.
  • Kumar A, Kumar A, Dogra R, et al. Effect of gamma irradiation on thermoluminescence studies of LiF:Sm3+. Dy3+ nanophosphor, Emerg Mater Res, 2020, 9, 122-131.
  • Çelen YY, Akkurt I, Kayiran HF. Gamma ray shielding parameters of barium tetra titanate (BaTi4O9) ceramic. J Mater Sci: Mater Electron. 2021;32:18351–18362.
  • Abouhaswaa AS, Perişanoğluc U, Tekin HO, et al. Nuclear shielding properties of B2O3–Pb3O4–ZnO glasses: multiple impacts of Er2O3 additive. Ceram Int. 2020;46:27849–27859.
  • Alsaif NAM, Alotiby M, Hanfi MY, et al. Comprehensive study of radiation shielding and mechanical features of Bi2O3-TeO2-B2O3-GeO2 glasses. J Aust Ceram Soc. 2021;57:1267–1274.
  • Hanfi MY, Sayyed MI, Lacomme EKA, et al. The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nucl Eng Technol. 2020. DOI:10.1016/j.net.2020.12.012.
  • Kumar A, Kumar A, Dogra R, et al. Effect of gamma irradiation on thermoluminescence studies of LiF:Sm3+,Dy3+ nanophosphor. Emerg Mater Res. 2020;9:122–131.
  • Akkurt I, Günoğlu k, Mavi B, et al. Radiation absorption properties of different plaster samples. AIP Conf Proc. 1476: 249–252.
  • Boodaghi MR, Kulali F, Inal A, et al. Monte Carlo simulation of a waste soda–lime–silica glass system containing Sb2O3 for gamma-ray shielding. Emerg Mater Res. 2020;9:1334–1340. DOI:10.1680/jemmr.20.00202.
  • Kurtulus R, Kavas T, Akkurt I, et al. An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram Int. 2020;46:21120–21127.
  • Cullum B, Kelly L. Morphology and performance of organic nanocomposites for γ-ray sensing. Emerg Mater Res. 2020;9:520–526.
  • Hossain MF, Pervez MS, Nahid AI. Influence of film thickness on optical and morphological properties of TiO2 thin films. Emerg Mater Res. 2020;9:186–191.
  • Kaur T, Sharma J, Singh T. Thickness optimization of Sn–Pb alloys for experimentally measuring mass attenuation coefficients. Nucl Eng Technol. 2017;3:1–5.
  • Ryu J, Choi JJ, Hahn BD, et al. Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:2510–2515.
  • Ou-Yang J, Zhu B, Zhang Y, et al. New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications. Appl Phys A. 2015;118:1177–1181. DOI:10.1007/s00339-015-9004-8.
  • Kumara P, Pattanaika M. Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceram Int. 2013;39:65–69.
  • Sharma S, Singh V, Kotnala RK, et al. Comparative studies of pure BiFeO3 prepared by sol–gel versus conventional solid-state-reaction method. J Mater Sci: Mater Electron. 2014;25:1915–1921. DOI:10.1007/s10854-014-1820-7.
  • Taylor JG. Neural Networks and their applications. West Sussex: John Wiley; 1996.
  • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–536.
  • Jaliliantabar F, Ghobadian B, Najafi G, et al. Artificial neural network modeling and sensitivity analysis of performance and emissions in a compression ignition Engine using biodiesel fuel. Energies. 2018;11:2410. DOI:10.3390/en11092410.
  • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991;4:251–257.
  • Sayyed MI, Mahmoud KA, Islam S, et al. Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates. Radiat Phys Chem. 2020;174:108925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.