303
Views
2
CrossRef citations to date
0
Altmetric
Articles

Chitosan production by Penicillium citrinum using paper mill wastewater and rice straw hydrolysate as low-cost substrates in a continuous stirred tank reactor

, , ORCID Icon, &
Pages 2254-2269 | Received 25 Aug 2021, Accepted 15 Dec 2021, Published online: 03 Feb 2022

References

  • Ghanem A, Ghaly A. Immobilization of glucose oxidase in chitosan gel beads. J Appl Polym Sci. 2004;91:861–866. doi:10.1002/App.13221.
  • Hadi AG. Dye removal from colored textile wastewater using synthesized chitosan. Int J Sci Technol. 2013;2:359–364.
  • Ngah WSW, Teong LC, Hanafiah MAKM. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym. 2011;83:1446–1456. doi:10.1016/j.carbpol.2010.11.004.
  • Okamoto Y, Kawakami K, Miyatake K, et al. Analgesic effects of chitin and chitosan. Carbohydr Polym. 2002;49:249–252. doi:10.1016/S0144-8617(01)00316-2.
  • Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–632. doi:10.1016/j.progpolymsci.2006.06.001.
  • Thongngam M, McClements DJ. Influence of pH: ionic strength, and temperature on self-association and interactions of sodium dodecyl sulfate in the absence and presence of chitosan. Langmuir. 2005;21:79–86. doi:10.1021/la048711o.
  • Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–575. doi:10.1016/S0142-9612(96)00167-6.
  • Zhang H, Neau SH. In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials. 2001;22:1653–1658. doi:10.1016/S0142-9612(00)00326-4.
  • Akter Mukta J, Rahman M, As Sabir A, et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol. 2017;11:9–18. doi:10.1016/j.bcab.2017.05.005.
  • Auta M, Hameed BH. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J. 2014;237:352–361. doi:10.1016/j.cej.2013.09.066.
  • Philibert T, Lee BH, Fabien N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol. 2017;181(4):1314–1337. doi:10.1007/s12010-016-2286-2.
  • Fan C, Li K, He Y, et al. Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Sci Total Environ. 2018;627:1396–1403. doi:10.1016/j.scitotenv.2018.02.033.
  • Jongsri P, Wangsomboondee T, Rojsitthisak P, et al. Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT. 2016;73:28–36. doi:10.1016/j.lwt.2016.05.03.
  • Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J. 2019;6(2):962–979. doi:10.18331/BRJ2019.6.2.3.
  • Mirmohamadsadeghi S, Karimi K, Azarbaijani R, et al. Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev. 2021;135:110173. doi:10.1016/j.rser.2020.110173.
  • Soltanian S, Aghbashlo M, Almasi F, et al. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manage. 2020;212:112792, doi:10.1016/j.enconman.2020.112792.
  • Cheah WY, Sankaran R, Show PL, et al. Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J. 2020;7(1):1115–1127. doi:10.18331/BRJ2020.7.1.4.
  • Namboodiri MMT, Pakshirajan K. Sustainable and green approach of chitosan production from Penicillium citrinum biomass using industrial wastewater as a cheap substrate. J Environ Manage. 2019;240, doi:10.1016/j.jenvman.2019.03.085.
  • Ray SG, Ghangrekar MM. Biodegradation kinetics of thin-stillage treatment by Aspergillus awamori and characterization of recovered chitosan. Appl Microbiol Biotechnol. 2016;100:1955–1965. doi:10.1007/s00253-015-7080-5.
  • Berger LR, Stamford TC, Stamford-Arnaud TM, et al. Effect of corn steep liquor (CSL) and cassava wastewater (CW) on chitin and chitosan production by Cunninghamella elegans and their physicochemical characteristics and cytotoxicity. Molecules. 2014;19:2771–2792. doi:10.3390/molecules19032771.
  • Vinche MH, Asachi R, Zamani A, et al. Ethanol and chitosan production from wheat hydrolysate by Mucor hiemalis. J Chem Technol Biotechnol. 2013;88:255–260. doi:10.1002/jctb.3822.
  • Tai C, Li S, Xu Q, et al. Chitosan production from hemicellulose hydrolysate of corn straw: impact of degradation products on Rhizopus oryzae growth and chitosan fermentation. Lett Appl Microbiol. 2010;51:278–284. doi:10.1111/j.1472-765X.2010.02893.x.
  • Streit F, Koch F, Laranjeira MCM, et al. Production of fungal chitosan in liquid cultivation using apple pomace as substrate. Brazilian J Microbiol. 2009;40:20–25. doi:10.1590/S1517-83822009000100003.
  • Kamali M, Gameiro T, Costa MEV, et al. Anaerobic digestion of pulp and paper mill wastes – an overview of the developments and improvement opportunities. Chem Eng J. 2016;298:162–182. doi:10.1016/j.cej.2016.03.119.
  • Hong J, Li X. Environmental assessment of recycled printing and writing paper: a case study in China. Waste Manag. 2012;32:264–270. doi:10.1016/j.wasman.2011.09.026.
  • Wiegand PS, Flinders CA, Ice GG, et al. Water profiles of the forest products industry and their utility in sustainability assessment. Tappi Journal. 2011;10:19–27.
  • Singh AK, Kumar A, Bilal M, et al. Organometallic pollutants of paper mill wastewater and their toxicity assessment on stinging catfish and sludge worm. Environ Technol Innovation. 2021;101831. doi:10.1016/j.eti.2021.101831.
  • Kumar A, Chandra R. Biodegradation and toxicity reduction of pulp paper mill wastewater by isolated laccase producing Bacillus cereus AKRC03. Cleaner Eng Technol. 2021;100193. doi:10.1016/j.clet.2021.100193.
  • Pandey N, Thakur C. Study on treatment of paper mill wastewater by electrocoagulation and its sludge analysis. Chem Data Collect. 2020;27:100390.
  • American Public Health Association. A Standard methods for the examination of water and wastewater. 1998.
  • Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144–158.
  • Arun S, Manikandan NA, Pakshirajan K, et al. Cu (II) removal by Nostoc muscorum and its effect on biomass growth and nitrate uptake: a photobioreactor study. Int Biodeterior Biodegradation. 2017;119:111–117. doi:10.1016/j.ibiod.2016.09.022.
  • Naveena B, Armshaw P, Pembroke JT, et al. Kinetic and optimisation studies on ultrasonic intensified photo-autotrophic ethanol production from Synechocystis sp. Renew Energy. 2016;95:522–530. doi:10.1016/j.renene.2016.04.061.
  • Gopinath KP, Kathiravan MN, Srinivasan R, et al. Evaluation and elimination of inhibitory effects of salts and heavy metal ions on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresour Technol. 2011;102:3687–3693. doi:10.1016/j.biortech.2010.11.072.
  • Yadav KS, Naseeruddin S, Prashanthi GS, et al. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol. 2011;102(11):6473–6478.
  • Silva JPA, Carneiro LM, Roberto IC. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process. Biotechnol Biofuels. 2013;6(1):1–13.
  • Kruger NJ. The Bradford method for protein quantification. Tottowa (NJ): Humana Press; 2009, 17–24.
  • Daverey A, Pakshirajan K. Treatment of dairy wastewater containing high amount of fats and oils using a yeast-bioreactor system under batch: fed-batch and continuous operation. Desalin Water Treat. 2016;57:5473–5479. doi:10.1080/19443994.2014.1003609.
  • Gupta N, Manikandan NA, Pakshirajan K. Real-time lipid production and dairy wastewater treatment using Rhodococcus opacus in a bioreactor under fed-batch: continuous and continuous cell recycling modes for potential biodiesel application. Biofuels. 2018;9:239–245. doi:10.1080/17597269.2017.1336347.
  • Rajakumar GS, Nandy SC. Isolation: purification, and some properties of Penicillium chrysogenum tannase. Appl Environ Microbiol. 1983;46:525–527.
  • Vergara-Fernández A, Van Haaren B, Revah S. Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotechnol Lett. 2006;28:2011–2017. doi:10.1007/s10529-006-9186-4.
  • Iranmanesh E, Halladj R, Zamir SM. Microkinetic analysis of n-Hexane biodegradation by an isolated fungal consortium from a biofilter: influence of temperature and toluene presence. CLEAN – Soil Air Water. 2015;43:104–111. doi:10.1002/clen.201200318.
  • Bader NB, Germec M, Turhan I. Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochem. 2021;100:26–38. doi:10.1016/j.procbio.2020.09.018.
  • Germec M, Turhan I. Application of Aspergillus niger inulinase production in sugar beet molasses-based medium optimized by central composite design to mathematical models. Biomass Convers Biorefinery. 2021; 1–19. doi:10.1007/s13399-021-01923-x.
  • Yatmaz E, Germec M, Erkan SB, et al. Modeling of ethanol fermentation from carob extract-based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor. Biomass Convers Biorefinery. 2020: 1–15. doi:10.1007/s13399-020-01154-6.
  • Germec M, Karhan M, Demirci A, et al. Mathematical modeling of batch bioethanol generation from carob extract in the suspended-cell stirred-tank bioreactor. Int J Energy Res. 2020;44(11):9021–9034. doi:10.1002/er.5612.
  • Huang C-F, Lin T-H, Guo G-L, et al. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol. 2009;100:3914–3920. doi:10.1016/j.biortech.2009.02.064.
  • Almeida JR, Modig T, Petersson A, et al. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82:340–349. doi:10.1002/jctb.1676.
  • Aghbashlo M, Khounani Z, Hosseinzadeh-Bandbafha H, et al. Exergoenvironmental analysis of bioenergy systems: a comprehensive review. Renew Sustain Energy Rev. 2021;149:111399. doi:10.1016/j.rser.2021.111399.
  • Amid S, Aghbashlo M, Tabatabaei M, et al. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Convers Manage. 2021;227:113637. doi:10.1016/j.enconman.2020.113637.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.