273
Views
4
CrossRef citations to date
0
Altmetric
Articles

Copper and zinc adsorption from bacterial biomass - possibility of low-cost industrial wastewater treatment

, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2441-2450 | Received 27 Oct 2021, Accepted 10 Jan 2022, Published online: 06 Feb 2022

References

  • United Nations. Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development [Internet]. 2020 [cited 2021 Jan 8]. p. 21. Available from: https://unstats.un.org/sdgs/indicators/Global Indicator Framework after 2019 refinement_Eng.pdf%0Ahttps://unstats.un.org/sdgs/indicators/Global Indicator Framework_A.RES.71.313 Annex.pdf.
  • Botelho Junior AB, Espinosa DCR, Vaughan J, et al. Recovery of scandium from various sources: A critical review of the state of the art and future prospects. Miner Eng [Internet]. 2021;172:107148. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0892687521003770.
  • Botelho Junior AB, Espinosa DCR, Tenório JAS. Selective separation of Sc(III) and Zr(IV) from the leaching of bauxite residue using trialkylphosphine acids,: tertiary amine, tri-butyl phosphate and their mixtures. Sep Purif Technol [Internet]. 2021;279:119798. doi:10.1016/j.seppur.2021.119798.
  • Martins LS, Guimarães LF, Botelho Junior AB, et al. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. J Environ Manage [Internet]. 2021;295:113091. doi:10.1016/j.jenvman.2021.113091.
  • Santander P, Morales D, Rivas BL, et al. Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin. Polym Bull. 2017;74:2033–2044.
  • Zhao M, Xu Y, Zhang C, et al. New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol [Internet]. 2016;100:6509–6518. doi:10.1007/s00253-016-7646-x.
  • Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence,: toxicity, and bioaccumulation. J Chem. 2019: 1–14.
  • Tayebi-Khorami M, Edraki M, Corder G, et al. Re-thinking mining waste through an integrative approach Led by circular economy aspirations. Minerals [Internet]. 2019;9:286. doi:10.3390/min9050286.
  • Izidoro JC, Kim MC, Bellelli VF, et al. Synthesis of zeolite A using the waste of iron mine tailings dam and its application for industrial effluent treatment. J Sustain Min [Internet]. 2019;18:277–286. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2300396019301119.
  • Baltazar MDPG, Gracioso LH, Avanzi IR, et al. Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine - PA - Brazil. J Mater Res Technol [Internet]. 2019;8:475–483. doi:10.1016/j.jmrt.2018.04.006.
  • Botelho Junior AB, Vicente ADA, Espinosa DCR, et al. Recovery of metals by ion exchange process using chelating resin and sodium dithionite. J Mater Res Technol [Internet]. 2019;8:4464–4469. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2238785418312110.
  • Perez ID, Anes IA, Botelho Junior AB, et al. Comparative study of selective copper recovery techniques from nickel laterite leach waste towards a competitive sustainable extractive process. Clean Eng Technol [Internet]. 2020;1:100031. Available from: doi:10.1016/j.clet.2020.100031%0Ahttps://linkinghub.elsevier.com/retrieve/pii/S2666790820300318.
  • Malakootian M, Khatami M, Mahdizadeh H, et al. A study on the photocatalytic degradation of p-Nitroaniline on glass plates by Thermo-Immobilized ZnO nanoparticle. Inorg Nano-Metal Chem [Internet]. 2020;50:124–135. Available from: doi:10.1080/24701556.2019.1662807.
  • Javid N, Malakootian M. Removal of bisphenol a from aqueous solutions by modified-carbonized date pits by zno nano-particles. Desalin Water Treat. 2017;95:144–151.
  • Bădescu IS, Bulgariu D, Ahmad I, et al. Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. J Environ Manage. 2018;224:288–297.
  • Tan H, Wang C, Zeng G, et al. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater [Internet]. 2020;386:121628. doi:10.1016/j.jhazmat.2019.121628.
  • Ubando AT, Africa ADM, Maniquiz-Redillas MC, et al. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J Hazard Mater [Internet]. 2021;402:123431. doi:10.1016/j.jhazmat.2020.123431.
  • Avanzi IR, Gracioso LH, Baltazar MDPG, et al. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res. 2017;24:3717–3726.
  • Calfa BA, Torem ML. Bioreagents - Their use in the removal of heavy metals from liquid streams by biosorption/ bioflotation. Rev Esc Minas [Internet]. 2007;60:537–542. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672007000300015&lng=pt&tlng=pt.
  • Zhang M, Wen Y, Luo X, et al. Characterization, mechanism of cypermethrin biosorption by saccharomyces cerevisiae strains YS81 and HP and removal of cypermethrin from apple and cucumber juices by inactive cells. J Hazard Mater. 2021;407(124350):1–11.
  • Davoodi SM, Miri S, Taheran M, et al. Bioremediation of unconventional oil contaminated ecosystems under natural and assisted conditions: A review. Environ Sci Technol. 2020;54:2054–2067.
  • Soto-Ramírez R, Lobos M-G, Córdova O, et al. Effect of growth conditions on cell wall composition and cadmium adsorption in chlorella vulgaris: A new approach to biosorption research. J Hazard Mater [Internet]. 2021;125059. doi:10.1016/j.artmed.2020.101998.
  • Barros KS, Martí-Calatayud MC, Scarazzato T, et al. Investigation of ion-exchange membranes by means of chronopotentiometry: A comprehensive review on this highly informative and multipurpose technique. Adv Colloid Interface Sci. 2021;293(102439):1–31.
  • Feijoo GC, Barros KS, Scarazzato T, et al. Electrodialysis for concentrating cobalt, chromium, manganese, and magnesium from a synthetic solution based on a nickel laterite processing route. Sep Purif Technol [Internet]. 2021;275(119192):1–10. doi:10.1016/j.seppur.2021.119192.
  • Scarazzato T, Panossian Z, Tenório JAS, et al. Water reclamation and chemicals recovery from a novel cyanide-free copper plating bath using electrodialysis membrane process. Desalination [Internet]. 2018;436:114–124. Available from: doi:10.1016/j.desal.2018.01.005.
  • Scarazzato T, Panossian Z, Tenório JAS, et al. A review of cleaner production in electroplating industries using electrodialysis. J Clean Prod. 2016;168:1590–1602.
  • Silvestri E, Hall K, Chambers-Velarde Y, et al. Sampling, Laboratory, and Data Considerations for Microbial Data Collected in the Field [Internet]. 2018. Available from: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=536543&Lab=NHSRC.
  • Jackson E. Hydrometallurgical extraction and reclamation. 1st ed. Southampton: Ellis Horwood Limited; 1986.
  • Pourbaix M. Atlas of electrochemical equilibria in aqueous solutions [Internet]. Second. Franklin JA, editor. Houston: National Association of Corrosion Engineers; 1974. Available from: https://store.nace.org/atlas-of-electrochemical-equilibria-in-aqueous-solu.
  • Botelho Junior AB, Pinheiro ÉF, Espinosa DCR, et al. Adsorption of lanthanum and cerium on chelating ion exchange resins: kinetic and thermodynamic studies. Sep Sci Technol [Internet]. 2021: 1–10. doi:10.1080/01496395.2021.1884720.
  • Zagorodni AA. Ion exchange materials: properties and applications. 1st ed. Elsevier. Stockholm: Elsevier; 2012.
  • Kinniburgh DG. General purpose adsorption isotherms. Environ Sci Technol. 1986;20:895–904.
  • Ho Y-S. Isotherms for the sorption of lead onto peat: comparison of linear and Non-linear methods. Polish J Environ Stud. 2006;15:81–86.
  • Cho YS, Lim HS. Comparison of various estimation methods for the parameters of michaelis–menten equation based on in vitro elimination kinetic simulation data. Transl Clin Pharmacol. 2018;26:39–47.
  • Inamuddin ML. Ion exchange technology I [Internet]. Dr. Inamuddin, Luqman M, editors. Dordrecht: Springer Netherlands; 2012; Available from: http://link.springer.com/10.1007/978-94-007-1700-8.
  • Yu J, Zhang D, Ren W, et al. Transport of Enterococcus faecalis in granular activated carbon column: potential energy, migration, and release. Colloids Surfaces B Biointerfaces [Internet]. 2019;183:110415. doi:10.1016/j.colsurfb.2019.110415.
  • Cui J, Zhu N, Kang N, et al. Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: from biosorption to bioreduction. Chem Eng J [Internet]. 2017;328:1051–1057. doi:10.1016/j.cej.2017.07.124.
  • Jeon YW. Optimization of ultrasonification of slaughter blood for protein solubilization. Environ Eng Res. 2015;20:163–169.
  • Bhattacharya AK, Mandal SN, Das SK. Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem Eng J. 2006;123:43–51.
  • Veli S, Alyüz B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater. 2007;149:226–233.
  • Lu W-B, Shi J-J, Wang C-H, et al. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater [Internet]. 2006;134:80–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389405006527.
  • Chubar N, Behrends T, Van Cappellen P. Biosorption of metals (Cu2+, Zn2+) and anions (F-, H2PO4-) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Colloids Surfaces B Biointerfaces. 2008;65:126–133.
  • Derrick MR, Stulik D, Landry JM. Infrared spectroscopy in conservation science. Los Angeles: Getty Publications; 1999.
  • Vijayaraghavan K, Yun Y. Bacterial biosorbents and biosorption. Biotechnol Adv [Internet]. 2008;26:266–291. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0734975008000177.
  • Zhang X, Wang X. Adsorption and desorption of Nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. Plos One. 2015;10:1–21.
  • Leyva Ramos R, Bernal Jacome LA, Mendoza Barron J, et al. Adsorption of zinc(II) from an aqueous solution onto activated carbon. J Hazard Mater. 2002;90:27–38.
  • Monser L, Adhoum N. Modified activated carbon for the removal of copper,: zinc, chromium and cyanide from wastewater. Sep Purif Technol. 2002;26:137–146.
  • Lin C-C, Lai Y-T. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas Aeruginosa PU21 beads. J Hazard Mater [Internet]. 2006;137:99–105. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304389406002354.
  • Botelho Junior AB, Vicente ADA, Espinosa DCR, et al. Effect of iron oxidation state for copper recovery from nickel laterite leach solution using chelating resin. Sep Sci Technol [Internet]. 2020;55:788–798. Available from: https://www.tandfonline.com/doi/full/10.1080/01496395.2019.1574828.
  • Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AIChE J [Internet]. 1974;20:228–238. http://doi.wiley.com/10.1002/aic.690200204.
  • Pérez Silva RM, Ábalos Rodríguez A, Gómez Montes De Oca JM, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol [Internet]. 2009;100:1533–1538. doi:10.1016/j.biortech.2008.06.057.
  • Perez ID, Botelho Junior AB, Aliprandini P, et al. Copper recovery from nickel laterite with high-iron content: A continuous process from mining waste. Can J Chem Eng [Internet]. 2020;98:957–968. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.23667.
  • Neto IFF, Sousa CA, Brito MSCA, et al. A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards. Sep Purif Technol [Internet]. 2016;164:19–27. doi:10.1016/j.seppur.2016.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.