307
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effect of the presence of water on sulfur removal capacity during H2S removal from syngas using ZnO adsorbent

ORCID Icon, , &
Pages 3803-3812 | Received 01 Feb 2022, Accepted 27 Apr 2022, Published online: 15 May 2022

References

  • Rostrup-Nielsen JR. Catalytic steam reforming. In: JR Anderson, M Boudart, editor. Catalysis science & technology. Berlin: Springer; 1984. p. 1–117. DOI:10.1007/978-3-642-93247-2_1.
  • Bartholomew CH, Agrawal PK, Katzer JR. Sulfur poisoning of metals. Adv Catal. 1982;31:135–242. DOI:10.1016/S0360-0564(08)60454-X.
  • Rasmussen JFB, Hagen A. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells. J Power Sources. 2009;191(2):534–541. DOI:10.1016/j.jpowsour.2009.02.001.
  • Wang Y, Yang D, Li S, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation. Chem Eng J. 2019;357:258–268. DOI:10.1016/j.cej.2018.09.156.
  • Novochinskii II, Song C, Ma X, et al. Low-temperature H2S removal from steam-containing gas mixtures with ZnO for fuel cell application. 1. ZnO particles and extrudates. Energy Fuels. 2004;18:576–583. DOI:10.1021/ef030137 l.
  • C. Song, X. Ma, Desulfurization technologies. In: Hydrogen and syngas production and purification technologies. John Wiley & Sons; 2009. p. 219–310. DOI:10.1002/9780470561256.ch5.
  • Meng X, De Jong W, Pal R, et al. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Process Technol. 2010;91(8):964–981. DOI:10.1016/j.fuproc.2010.02.005.
  • Frilund C, Simell P, Kaisalo N, et al. Desulfurization of biomass syngas using ZnO-based adsorbents: long-term hydrogen sulfide breakthrough experiments. Energy Fuels. 2020. DOI:10.1021/acs.energyfuels.9b04276.
  • Dutta A, Cheah S, Bain R, et al. Integrated process configuration for high-temperature sulfur mitigation during biomass conversion via indirect gasification. Ind Eng Chem Res. 2012;51:8326–8333. DOI:10.1021/ie202797s.
  • Schrodt JT, Hilton GB, Rogge CA. High-temperature desulphurization of low-CV fuel gas. Fuel. 1975;54(4):269–272. DOI:10.1016/0016-2361(75)90042-3.
  • Uchida H. Hot gas desulphurization processes. Nenryo Kyokai-Shi. 1983;62:792–802.
  • Westmoreland PR, Harrison DP. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environ Sci Technol. 1976;10(7):659–661. DOI:10.1021/es60118a010.
  • Lew S, Sarofim AF, Flytzani-Stephanopoulos M. Modeling of the sulfidation of zinc-titanium oxide sorbents with hydrogen sulfide. AIChE J. 1992;38(8):1161–1169. DOI:10.1002/aic.690380804.
  • Torres W, Pansare SS, Goodwin JG. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev Sci Eng. 2007;49(4):407–456. DOI:10.1080/01614940701375134.
  • Sasaoka E, Hirano S, Kasaoka S, et al. Characterization of reaction between zinc oxide and hydrogen sulfide. Energy Fuels. 1994;8(5):1100–1105. DOI:10.1021/ef00047a013.
  • Ling L, Zhao Z, Wang B, et al. Effects of CO and CO2 on the desulfurization of H2S using a ZnO sorbent: a density functional theory study. Phys Chem Chem Phys. 2016;18:11150–11156. DOI:10.1039/c6cp01422d.
  • Hongyun Y, Sothen R, Cahela DR, et al. Breakthrough characteristics of reformate desulfurization using zno sorbents for logistic fuel cell power systems. Ind Eng Chem Res. 2008;47(24):10064–10070. DOI:10.1021/ie8008617.
  • Pineda M, Palacios JM, Alonso L, et al. Performance of zinc oxide based sorbents for hot coal gas desulfurization in multicycle tests in a fixed-bed reactor. Fuel. 2000;79(8):885–895. DOI:10.1016/S0016-2361(99)00218-5.
  • Li L, King DL. H2S removal with ZnO during fuel processing for PEM fuel cell applications. Catal Today. 2006;116(4):537–541. DOI:10.1016/j.cattod.2006.06.024.
  • Yang H, Tatarchuk B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications. AIChE J. 2010;56(11):2898–2904. DOI:10.1002/aic.12201.
  • Spies KA, Rainbolt JE, Li XS, et al. Warm cleanup of coal-derived syngas: multicontaminant removal process demonstration. Energy Fuels. 2017;31(3):2448–2456. DOI:10.1021/acs.energyfuels.6b02568.
  • Van Der Drift A, Van Doorn J, Vermeulen JW. Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass Bioenergy. 2001;20(1):45–56. DOI:10.1016/S0961-9534(00)00045-3.
  • Tuna Ö, Simsek EB, Sarıoğlan A, et al. Influence of the process conditions on the kinetic behaviour of zinc orthotitanate for syngasclean-up. Biomass Bioenergy. 2019;128; DOI:10.1016/j.biombioe.2019.105326.
  • Sasaoka E, Taniguchi K, Uddin MA, et al. Characterization of reaction between ZnO and COS. Ind Eng Chem Res. 1996;35:2389–2394. DOI:10.1021/ie950370+.
  • Dutta BK. Principles of mass transfer and separation processes. Can J Chem Eng. 2009;87(5):818–819. DOI:10.1002/cjce.20228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.