197
Views
2
CrossRef citations to date
0
Altmetric
Articles

Investigation of different molecular weight Polyvinylidene Fluoride (PVDF) polymer for the fabrication and performance of braid hollow fiber membranes

, &
Pages 404-417 | Received 09 May 2022, Accepted 01 Aug 2022, Published online: 22 Aug 2022

References

  • Sonune A, Ghate R. Developments in wastewater treatment methods. Desalination. 2004;167:55–63.
  • Ezugbe EO, Rathilal S. Membrane technologies in wastewater treatment. Membranes (Basel). 2020;10:89. doi:10.3390/membranes10050089.
  • Bis M, Montusiewicz A, Piotrowicz A, et al. Modeling of wastewater treatment processes in membrane bioreactors compared to conventional activated sludge systems. Processes. 2019;7:285. doi:10.3390/pr7050285.
  • Judd S. The status of membrane bioreactor technology. Trends Biotechnol. 2008;26:109–116. doi:10.1016/j.tibtech.2007.11.005
  • Radjenovi J, Matosic M, Mijatovic I, et al. Membrane bioreactor (MBR) as an advanced wastewater treatment technology. Handb Environ Chem. 2008;5:37–101. doi:10.1007/698_5_093.
  • Melin T, Jefferson B, Bixio D, et al. Membrane bioreactor technology for wastewater treatment and reuse. Desalination. 2006;187:271–282. doi:10.1016/j.desal.2005.04.086
  • Akhondi E, Zamani F, Tng KH, et al. The performance and fouling control of submerged hollow fiber (HF) systems: A review. Appl Sci. 2017;7:765–739. doi:10.3390/app7080765
  • Kumar M, Isloor AM, Todeti SR, et al. Effect of binary zinc-magnesium oxides on polyphenylsulfone/cellulose acetate derivatives hollow fiber membranes for the decontamination of arsenic from drinking water. Chem Eng J. 2021;405:126809. doi:10.1016/j.cej.2020.126809
  • Taherizadeh H, Hashemifard SA, Izadpanah AA, et al. Investigation of fouling of surface modified polyvinyl chloride hollow fiber membrane bioreactor via zinc oxide-nanoparticles under coagulant for municipal wastewater treatment. J Environ Chem Eng . 2021;9:105835. Available from: doi:10.1016/j.jece.2021.105835.
  • Sasikumar B, Bisht S, Arthanareeswaran G, et al. Performance of polysulfone hollow fiber membranes encompassing ZIF-8, SiO2/ZIF-8, and amine-modified SiO2/ZIF-8 nanofillers for CO2/CH4 and CO2/N2 gas separation. Sep Purif Technol. 2021;264:118471. Available from: doi:10.1016/j.seppur.2021.118471.
  • Zhang X, Xiao C, Hu X, et al. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane. Appl Surf Sci. 2013;264:801–810. Available from: doi:10.1016/j.apsusc.2012.10.135
  • Liu H, Wang S, Mao J, et al. Preparation and performance of braid-reinforced poly (vinyl chloride) hollow fiber membranes. J Appl Polym Sci. 2017;45068:1–10.
  • Zhang X, Xiao C, Hu X, et al. Hydrophilic modification of high-strength polyvinylidene fluoride hollow fiber membrane. Polym Eng Sci. 2014;54:276–287. doi:10.1002/pen.23559
  • Lee MS, Choi SH, Shin YC. Braid-reinforced Hollow Fiber Membrane. Assignee: Kolon Industries, Inc. 2007. Patent No: US 7,267,872 B2. Patent Date: Sep. 11, 2007.
  • Quan Q, Xiao C, Liu H, et al. Preparation and characterization of braided tube reinforced polyacrylonitrile hollow fiber membranes. J Appl Polym Sci. 2015;41795:1–10.
  • Mahendran M, Goodboy KP, Fabbricino L. Hollow Fiber Membrane and Braided Tubular Support Therefor. 2005. Patent No: US 2005/0051479 A1. Patent Date: Mar. 10, 2005.
  • Peechmani P, Othman MHD, Kamaludin R, et al. High flux polysulfone braided hollow fiber membrane for wastewater treatment role of zinc oxide as hydrophilic enhancer. J Environ Chem Eng. 2021;9:105873. Available from: doi:10.1016/j.jece.2021.105873.
  • Turken T, Sengur-Tasdemir R, Sayinli B, et al. Reinforced thin-film composite nanofiltration membranes: fabrication, characterization, and performance testing. J Appl Polym Sci. 2019;136:48001–48009. doi:10.1002/app.48001
  • El-badawy T, Othman MHD, Adam MR, et al. Braid-reinforced PVDF hollow fiber membranes for high-efficiency separation of oily wastewater. J Environ Chem Eng. 2022;10:107258. Available from: doi:10.1016/j.jece.2022.107258.
  • Xia L, Ren J, McCutcheon JR. Braid-reinforced thin film composite hollow fiber nanofiltration membranes. J Memb Sci. 2019;585:109–114. doi:10.1016/j.memsci.2019.04.040
  • Turken T, Sengur-Tasdemir R, Ates-Genceli E, et al. Progress on reinforced braided hollow fiber membranes in separation technologies: A review. J Water Process Eng. 2019;32:100938. Available from: doi:10.1016/j.jwpe.2019.100938.
  • Fan Z, Xiao C, Liu H, et al. Structure design and performance study on braid-reinforced cellulose acetate hollow fiber membranes. J Memb Sci. 2015;486:248–256. Available from: doi:10.1016/j.memsci.2015.03.066.
  • Liu H, Wang S, Mao J, et al. Preparation and performance of braid-reinforced poly(vinyl chloride) hollow fiber membranes. J Appl Polym Sci. 2017;134:1–10.
  • Turken T, Sengur-Tasdemir R, Urper-Bayram GM, et al. Fabrication and characterization of polysulfone reinforced hollow fibre membrane. Environ Technol (United Kingdom). 2021;42:2690–2699.
  • Quan Q, Xiao C, Liu H, et al. Preparation and characterization of braided tube reinforced polyacrylonitrile hollow fiber membranes. J Appl Polym Sci. 2015;132:1–10.
  • Xiao C, Xiao C, Chen M, et al. Study on Structure and Properties of Tubular Braid-Reinforced Poly (Lactic Acid) (PLA) Hollow Fiber Membranes. 2019;161:116–125.
  • Chen M, Xiao C, Wang C, et al. Study on the structural design and performance of novel braid-reinforced and thermostable poly(m-phenylene isophthalamide) hollow fiber membranes. RSC Adv. 2017;7:20327–20335. doi:10.1039/C7RA01171G
  • Kang Gd, Cao Ym. Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. J Memb Sci. 2014;463:145–165. doi:10.1016/j.memsci.2014.03.055
  • Hassankiadeh NT, Cui Z, Kim JH, et al. PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Memb Sci. 2014;471:237–246. Available from: doi:10.1016/j.memsci.2014.07.060.
  • Chen Z, Rana D, Matsuura T, et al. Study on structure and vacuum membrane distillation performance of pvdf membranes: II. influence of molecular weight. Chem Eng J. 2015;276:174–184. Available from: doi:10.1016/j.cej.2015.04.030.
  • Haponska M, Trojanowska A, Nogalska A, et al. PVDF Membrane Morphology - Influence of Polymer Molecular Weight and Preparation Temperature. 2017;9:1–11.
  • Ismail NH, Salleh WNW, Ismail AF, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep Purif Technol. 2020;233:116007. Available from: doi:10.1016/j.seppur.2019.116007.
  • Shen J, Zhang Q, Yin Q, et al. Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J Memb Sci. 2017;521:95–103. Available from: doi:10.1016/j.memsci.2016.09.006.
  • Ma CY, Huang JP, Xi DL. Preparation, characterization and performance of a novel PVDF/PMMA/TPU blend hollow fiber membrane for wastewater treatment. Water Sci Technol. 2012;65:1041–1047. Available from: doi:10.2166/wst.2012.930.
  • Gu M, Zhang J, Xia Y, et al. Poly(vinylidene fluoride) crystallization behavior and membrane structure formation via thermally induced phase separation with benzophenone diluent. J Macromol Sci Part B Phys. 2007;47:180–191. doi:10.1080/00222340701748628
  • Terasawa N, Ono N, Hayakawa Y, et al. Effect of hexafluoropropylene on the performance of poly(vinylidene fluoride) polymer actuators based on single-walled carbon nanotube–ionic liquid gel. B Chem. 2011;160:161–167. Available from: doi:10.1016/j.snb.2011.07.027.
  • Zhang R, Xu Y, Shen L, et al. Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J Memb Sci. 2022;653:120541. Available from: https://www.sciencedirect.com/science/article/pii/S0376738822002885. doi:10.1016/j.memsci.2022.120541
  • Liu J, Shen L, Lin H, et al. Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J Colloid Interface Sci. 2022;618:483–495. Available from: https://www.sciencedirect.com/science/article/pii/S002197972200501X. doi:10.1016/j.jcis.2022.03.106
  • Chen B, Hu X, Wang J, et al. Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: performance and mechanism. J Clean Prod. 2022;355:131858. Available from: https://www.sciencedirect.com/science/article/pii/S0959652622014688. doi:10.1016/j.jclepro.2022.131858
  • Pan Z, Zeng B, Yu G, et al. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). Sci Total Environ. 2022;842:156912. Available from: https://www.sciencedirect.com/science/article/pii/S0048969722040098. doi:10.1016/j.scitotenv.2022.156912
  • Zeng B, Pan Z, Shen L, et al. Effects of polysaccharides’ molecular structure on membrane fouling and the related mechanisms. Sci Total Environ. 2022;836:155579. Available from: https://www.sciencedirect.com/science/article/pii/S0048969722026754. doi:10.1016/j.scitotenv.2022.155579
  • Li Z, Zhang W, Tao M, et al. In-situ growth of UiO-66-NH2 in porous polymeric substrates at room temperature for fabrication of mixed matrix membranes with fast molecular separation performance. Chem Eng J. 2022;435:134804. Available from: https://www.sciencedirect.com/science/article/pii/S1385894722003114. doi:10.1016/j.cej.2022.134804
  • Ergön-Can T, Köse-Mutlu B, Koyuncu İ, et al. Biofouling Control Based on Bacterial Quorum Quenching with a new Application: Rotary Microbial Carrier Frame. 2017;525:116–124.
  • (COD) 5220 Chemical oxygen demand. Standard methodsfor the examination of water and wastewater. 23rd ed. Washington, DC: American Public Health Association; 2018. doi:10.2105/SMWW.2882.103
  • Ishigami T, Nakatsuka K, Ohmukai Y, et al. Solidification characteristics of polymer solution during polyvinylidene fluoride membrane preparation by nonsolvent-induced phase separation. J Memb Sci. 2013;438:77–82. Available from: doi:10.1016/j.memsci.2013.03.011.
  • Tan XM, Rodrigue D. A review on porous polymeric membrane preparation. part II: production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers (Basel). 2019;11:1160 doi:10.3390/polym11071160.
  • Gilbert M. Relation of structure to thermal and mechanical properties. In: Gilbert M, editor. Brydson’s plast mater 8th ed. Oxford, UK: Butterworth-Heinemann; 2017. p. 59–73. doi:10.1016/B978-0-323-35824-8.00004-9
  • Yuan G, Xu Z, Wei Y. Characterization of PVDF – PFSA Hollow Fiber UF Blend Membrane with. 2009;69:141–148.
  • Hassankiadeh T, Cui Z, Hoon J, et al. PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Memb Sci. 2014;471:237–246. Available from: doi:10.1016/j.memsci.2014.07.060.
  • Lang W, Guo Y, Chu L. Evolution of the precipitation kinetics, morphologies, permeation performances, and crystallization behaviors of polyvinylidenefluoride (PVDF) hollow fiber membrane by adding different molecular weight polyvinylpyrrolidone (PVP). 2011.
  • Pezeshk N, Rana D, Narbaitz RM, et al. Novel modified PVDF ultrafiltration flat-sheet membranes. J Memb Sci. 2012;389:280–286. Available from: doi:10.1016/j.memsci.2011.10.039.
  • Bhushan B, Jung YC, Koch K. Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and low Adhesion. 2009;367:1631–1672.
  • Kuo C, Lin H, Tsai H. Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. DES. 2008;233:40–47. Available from: doi:10.1016/j.desal.2007.09.025.
  • Jin B, Lant P, Wil B. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Wat Res. 2003;37:2127–2139.
  • Woo SH, Park J, Min BR. Relationship between permeate flux and surface roughness of membranes with similar water contact angle values. Sep Purif Technol. 2015;146:187–191. Available from: doi:10.1016/j.seppur.2015.03.048.
  • Ghodsi A, Fashandi H, Zarrebini M. Highly effective CO2 capture using super-fine PVDF hollow fiber membranes with sub-layer large cavities. RSC Adv. 2015: 92234–92253. doi:10.1039/C5RA19022C
  • Li K, Su Q, Li S, et al. Aging of PVDF and PES ultrafiltration membranes by sodium hypochlorite: effect of solution pH. J Environ Sci (China). 2021;104:444–455. doi:10.1016/j.jes.2020.12.020
  • Keskin B, Ormancı-Acar T, Türken T, et al. Effect of wetting agent on the dye filtration performance of ultrafiltration membrane. Water Sci Technol. 2020;82:577–586.
  • Menon S, Bansode K, Nandi S, et al. Impact of cleaning agents on properties of tubular polyvinylidene fluoride (PVDF) membrane. Mater Today Proc. 2021;47:1466–1471. Available from: doi:10.1016/j.matpr.2021.03.722.
  • Ahmad AL, Abdulkarim AA, Ooi BS, et al. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chem Eng J. 2013;223:246–267. Available from: doi:10.1016/j.cej.2013.02.130.
  • Woo SH, Park J, Min BR. Relationship between permeate flux and surface roughness of membranes with similar water contact angle values. Sep Purif Technol. 2015;146:187–191. Available from: doi:10.1016/j.seppur.2015.03.048.
  • Kang JS, Kim KY, Lee YM. Preparation of microporous chlorinated poly (vinyl chloride) membrane in fabric and the characterization of their pore sizes and pore-size distributions. 2002.
  • Bessbousse H, Verchère J, Lebrun L. Increase in permeate flux by porosity enhancement of a sorptive UF membrane designed for the removal of mercury(II). J Memb Sci. 2010;364:167–176. Available from: doi:10.1016/j.memsci.2010.08.018.
  • Hashino M, Hirami K, Ishigami T, et al. Effect of kinds of membrane materials on membrane fouling with BSA. J Memb Sci. 2011;384:157–165. Available from: doi:10.1016/j.memsci.2011.09.015.
  • Wu T, Zhou B, Zhu T, et al. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015;5:7880–7889. doi:10.1039/C4RA13476A
  • Akar N, Asar B, Dizge N, et al. Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Memb Sci. 2013;437:216–226. Available from: doi:10.1016/j.memsci.2013.02.012.
  • Quan Q, Xiao CF, Liu HL, et al. Preparation and properties of two-dimensional braid heterogeneous-reinforced polyvinylidene fluoride hollow fiber membrane. Adv Mat Res. 2014;936:218–225. doi:10.4028/www.scientific.net/AMR.936.218
  • Feng S, Yu G, Cai X, et al. Effects of fractal roughness of membrane surfaces on interfacial interactions associated with membrane fouling in a membrane bioreactor. Bioresour Technol. 2017. Available from: doi:10.1016/j.biortech.2017.07.160.
  • Iorhemen OT, Hamza RA, Tay JH. Aspects of mathematical modelling of pressure retarded osmosis. Membranes. 2016;6:13–16. doi:10.3390/membranes6010013
  • Park N, Kwon B, Kim IS, et al. Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): characterizations, flux decline, and transport parameters. J Memb Sci. 2005;258:43–54. doi:10.1016/j.memsci.2005.02.025
  • Fan H, Xiao K, Mu S, et al. Impact of membrane pore morphology on multi-cycle fouling and cleaning of hydrophobic and hydrophilic membranes during MBR operation. J Memb Sci. 2018;556:312–320. Available from: doi:10.1016/j.memsci.2018.04.014.
  • Du X, Shi Y, Jegatheesan V, et al. A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes (Basel). 2020;10:1–33.
  • Maximous N, Nakhla G, Wan W. Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. J Membr Sci. 2009;339:93–99.
  • Jeon S, Rajabzadeh S, Okamura R, et al. The effect of membrane material and surface pore size on the fouling properties of submerged membranes. Water (Basel). 2016;8:602. doi:10.3390/w8120602
  • Kim DS, Kang JS, Lee YM. The influence of membrane surface properties on fouling in a membrane bioreactor for wastewater treatment. Sep Sci Technol. 2005;39:833–854. doi:10.1081/SS-120028449
  • Le-Clech P, Chen V, Fane TAG. Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci. 2006;284:17–53. doi:10.1016/j.memsci.2006.08.019
  • Jiang T, Kennedy MD, van der Meer WGJ, et al. The role of blocking and cake filtration in MBR fouling. Desalination. 2003;157:335–343. doi:10.1016/S0011-9164(03)00414-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.