244
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pesticides removal from water using activated carbons and carbon nanotubes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 431-453 | Received 24 Apr 2022, Accepted 12 Jul 2022, Published online: 22 Aug 2022

References

  • Di Bernardo Dantas A, Paschoalato CFR, Martinez MS, et al. Removal of diuron and hexazinone from guarany aquifer groundwater. Brazilian J Chem Eng. 2011;28:415–424.
  • Fava L, Orrù MA, Scardala S, et al. Pesticides and their metabolites in selected Italian groundwater and surface water used for drinking. Ann Ist Super Sanita [Internet]. 2010;46:309–316. http://www.ncbi.nlm.nih.gov/pubmed/20847467.
  • Montagner CC, Vidal C, Acayaba RD, et al. Trace analysis of pesticides and an assessment of their occurrence in surface and drinking waters from the State of São Paulo (Brazil). Anal Methods [Internet]. 2014;6:6668–6677. http://xlink.rsc.org/?DOI=C4AY00782D.
  • Chagas Pd, Souza MdF, Dombroski JLD, et al. Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles. Sci Rep. 2019;9:1–12.
  • Correia NM, Carbonari CA, Velini ED. Detection of herbicides in water bodies of the Samambaia River sub-basin in the Federal District and eastern Goiás. J Environ Sci Heal – Part B Pestic Food Contam Agric Wastes [Internet]. 2020;55:574–582. doi:10.1080/03601234.2020.1742000.
  • Bortoluzzi EC, Rheinheimer DS, Gonçalves CS, et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim Nova. 2007;30:1872–1876.
  • Dores EFGC, Carbo L, Ribeiro ML, et al. Pesticide levels in ground and surface waters of primavera do Leste Region, Mato Grosso, Brazil. J Chromatogr Sci. 2008;46:585–590.
  • Mohaupt V, Völker J, Altenburger R, et al. Pesticides in European rivers, lakes and groundwaters – Data assessment. ETC/ICM Technical Report 1/2020: European Topic Centre on Inland, Coastal and Marine waters. ETC/ICM Tech. Rep. 2020.
  • Nogueira EN, Dores EFGC, Pinto AA, et al. Currently used pesticides in water matrices in central-western Brazil. J Braz Chem Soc. 2012;23:1476–1487.
  • Schleder AA, Vargas LMP, Hansel FA, et al. Evaluation of occurrence of NO3–, Coliform and atrazine in a karst aquifer, Colombo. PR. Rev Bras Recur Hidricos. 2017;22:1–9.
  • Almberg KS, Turyk ME, Jones RM, et al. Atrazine contamination of drinking water and adverse birth outcomes in community water systems with elevated atrazine in Ohio, 2006–2008. Int J Environ Res Public Health. 2018;15:1889–1815.
  • Campinas M, Silva C, Viegas RMC, et al. To what extent may pharmaceuticals and pesticides be removed by PAC conventional addition to low-turbidity surface waters and what are the potential bottlenecks? J Water Process Eng. 2021;40:101833.
  • Okoya AA, Adegbaju OS, Akinola OE, et al. Comparative assessment of the efficiency of rice husk biochar and conventional water treatment method to remove chlorpyrifos from pesticide polluted water. Curr J Appl Sci Technol. 2020;39:1–11.
  • de Souza RM, Seibert D, Quesada HB, et al. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ Prot. 2020;135:22–37.
  • Elfikrie N, Bin HY, Zaidon SZ, et al. Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci Total Environ. 2020;712(712):1–9.
  • Syafrudin M, Kristanti RA, Yuniarto A, et al. Pesticides in drinking water — a review. 2021.
  • Hylling O, Nikbakht Fini M, Ellegaard-Jensen L, et al. A novel hybrid concept for implementation in drinking water treatment targets micropollutant removal by combining membrane filtration with biodegradation. Sci Total Environ [Internet]. 2019;694:133710. doi:10.1016/j.scitotenv.2019.133710.
  • Urtiaga A. Electrochemical technologies combined with membrane filtration. Curr Opin Electrochem [Internet]. 2021;27:100691. doi:10.1016/j.coelec.2021.100691.
  • Saylor GL, Kupferle MJ. The impact of chloride or bromide ions on the advanced oxidation of atrazine by combined electrolysis and ozonation. J Environ Chem Eng [Internet]. 2019;7:103105. doi:10.1016/j.jece.2019.103105.
  • Komtchou S, Delegan N, Dirany A, et al. Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2: WN photoanodes under UV/visible light. Catal Today [Internet]. 2020;340:323–333. doi:10.1016/j.cattod.2019.04.067.
  • Flanagan K, Branchu P, Boudahmane L, et al. Field performance of two biofiltration systems treating micropollutants from road runoff. Water Res [Internet]. 2018;145:562–578. doi:10.1016/j.watres.2018.08.064.
  • Benzaquén TB, Cuello NI, Alfano OM, et al. Degradation of Atrazine over a heterogeneous photo-fenton process with iron modified MCM-41 materials. Catal Today [Internet]. 2017;296:51–58. doi:10.1016/j.cattod.2017.04.021.
  • Miklos DB, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Res. 2018;139:118–131.
  • Piai L, Dykstra JE, Adishakti MG, et al. Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Res [Internet]. 2019;162:518–527. doi:10.1016/j.watres.2019.06.012.
  • Nam SW, Choi DJ, Kim SK, et al. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater [Internet]. 2014;270:144–152. doi:10.1016/j.jhazmat.2014.01.037.
  • Alves Pimenta JA, Francisco Fukumoto AA, Madeira TB, et al. Adsorbent selection for pesticides removal from drinking water. Environ Technol (United Kingdom). 2020;Advance online publication.:1–12.
  • Wang Y, Liu H, Wang S, et al. Simultaneous removal and oxidation of arsenic from water by δ-MnO2 modified activated carbon. J Environ Sci (China) [Internet]. 2020;94:147–160. doi:10.1016/j.jes.2020.03.006.
  • Lee CS, Shuit SH, Lim CC, et al. Synthesis of magnetic multi-walled carbon nanotubes via facile and solvent-free direct doping method for water remediation. J Water Process Eng [Internet]. 2022;45:102487. doi:10.1016/j.jwpe.2021.102487.
  • Wang B, Xiong M, Shi B, et al. Treatment of shale gas flowback water by adsorption on carbon- nanotube-nested diatomite adsorbent. J Water Process Eng [Internet]. 2021;42:102074. doi:10.1016/j.jwpe.2021.102074.
  • Dong L, Pan S, Liu J, et al. Performance and mechanism of Pb(II) removal from water by the spent biological activated carbon (SBAC) with different using-time. J Water Process Eng [Internet]. 2020;36:101255. doi:10.1016/j.jwpe.2020.101255.
  • Kaarela O, Koppanen M, Kesti T, et al. Natural organic matter removal in a full-scale drinking water treatment plant using ClO2 oxidation: performance of two virgin granular activated carbons. J Water Process Eng [Internet]. 2021;41:102001. doi:10.1016/j.jwpe.2021.102001.
  • Jaman S, Rodriguez R, Mazyck DW. Evaluation of common granular activated carbon parameters for trace contaminant removal. J Environ Eng. 2019;145:04019035.
  • Piplai T, Kumar A, Alappat BJ. Removal of ZnO and CuO nanoparticles from water using an activated carbon column. J Environ Eng. 2018;144:04017113.
  • Burkhardt JB, Burns N, Mobley D, et al. Modeling PFAS removal using granular activated carbon for full-scale system design. J Environ Eng. 2022;148:1–11.
  • Yang K, Fox JT. Adsorption of humic acid by acid-modified granular activated carbon and powder activated carbon. J Environ Eng. 2018;144:04018104.
  • Yang Y, Yu L, Iranmanesh S, et al. Laboratory and field investigation of sulfolane removal from water using activated carbon. J Environ Eng. 2020;146:04020022.
  • Zeng WJ, Li C, Feng Y, et al. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH)-intercalated graphene oxide membranes for highly efficient treatment of organic wastewater. J Water Process Eng [Internet]. 2021;40:101901. doi:10.1016/j.jwpe.2020.101901.
  • Marszałek A, Kamińska G, Abdel Salam NF. Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite-carbon nanotubes composites. J Water Process Eng [Internet]. 2022;46:102550. https://linkinghub.elsevier.com/retrieve/pii/S2214714421006371.
  • Cong Q, Wang J, Zhang Z, et al. Preparation of polyurethane and carbon nanotube foam and its adsorption properties for sulfonamides in water. J Environ Eng. 2020;146:04020116.
  • Program NWA. Pesticides in the Nation’s streams and ground water, 1992–2001; 2001.
  • Brazil. BRAZIL. Ministry of Health. Ordinance GM/MS No. 888, of May 4, 2021. Amends Annex XX of the Consolidation Ordinance GM/MS No. 5, of September 28, 2017, to provide for water quality control and surveillance procedures for human consumption and its potabil; 2021.
  • Walter WG. Standard methods for the examination of water and wastewater (11th ed.). Am J Public Heal Nations Heal [Internet]. 1961;51:940–940. http://ajph.aphapublications.org/doi/10.2105AJPH.51.6.940-a.
  • ABNT AB de NT. NBR 6508 standard: soil: real specific mass. Rio de Janeiro: Associação Brasileira de Normas Técnicas – ABNT; 2014.
  • Rouquerol J, Avnir D, Fairbridge CW, et al. Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem [Internet]. 1994;66:1739–1758. https://www.degruyter.com/document/doi/10.1351pac199466081739/html
  • Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon N Y. 2004;42:83–94.
  • Lladó J, Lao-Luque C, Ruiz B, et al. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Saf Environ Prot [Internet]. 2015;95:51–59. doi:10.1016/j.psep.2015.02.013.
  • Rambabu N, Guzman CA, Soltan J, et al. Adsorption characteristics of atrazine on granulated activated carbon and carbon nanotubes. Chem Eng Technol. 2012;35:272–280.
  • Ren X, Chen C, Nagatsu M, et al. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J [Internet]. 2011;170:395–410. doi:10.1016/j.cej.2010.08.045.
  • Tian Y, Gao B, Morales VL, et al. Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J [Internet]. 2012;210:557–563. doi:10.1016/j.cej.2012.09.015.
  • Rebello S, Asok AK, Mundayoor S, et al. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett. 2014;12:275–287.
  • Nunes RF, Teixeira ACSC. An overview on surfactants as pollutants of concern: occurrence, impacts and persulfate-based remediation technologies. Chemosphere [Internet]. 2022;300:134507. doi:10.1016/j.chemosphere.2022.134507.
  • Kaur K, Kaur J, Kumar R, et al. Formulation and physiochemical study of α-tocopherol based oil in water nanoemulsion stabilized with non toxic, biodegradable surfactant: sodium stearoyl lactate. Ultrason Sonochem [Internet]. 2017;38:570–578. doi:10.1016/j.ultsonch.2016.08.026.
  • Liu W, Wang X, Zhou X, et al. Quantitative structure-activity relationship between the toxicity of amine surfactant and its molecular structure. Sci Total Environ [Internet]. 2020;702:134593. doi:10.1016/j.scitotenv.2019.134593.
  • Ikehata K, El-Din MG. Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone Sci Eng. 2004;26:327–343.
  • Zhu T, Zhou Z, Qu F, et al. Separation performance of ultrafiltration during the treatment of algae-laden water in the presence of an anionic surfactant. Sep Purif Technol. 2022;281:119894. doi:10.1016/j.seppur.2021.119894.
  • Elsehly EM, Chechenin NG, Makunin AV, et al. Ozone functionalized CNT-based filters for high removal efficiency of benzene from aqueous solutions. J Water Process Eng [Internet]. 2018;25:81–87. doi:10.1016/j.jwpe.2018.06.005.
  • Luan H, Teychene B, Huang H. Efficient removal of As(III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chem Eng J [Internet]. 2019;355:341–350. doi:10.1016/j.cej.2018.08.104.
  • Oulton R, Haase JP, Kaalberg S, et al. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter. Environ Sci Technol. 2015;49:3687–3697.
  • Park WK, Yoon Y, Kim S, et al. Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. J Environ Chem Eng [Internet]. 2016;4:3246–3252. doi:10.1016/j.jece.2016.06.028.
  • Lee J, Jeong S, Liu Z. Progress and challenges of carbon nanotube membrane in water treatment. Crit Rev Environ Sci Technol. 2016;46:999–1046.
  • Ali S, Rehman SAU, Luan HY, et al. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci Total Environ [Internet]. 2019;646:1126–1139. doi:10.1016/j.scitotenv.2018.07.348.
  • Lee B, Baek Y, Lee M, et al. A carbon nanotube wall membrane for water treatment. Nat Commun. 2015;6:1–7.
  • Jame SA, Zhou Z. Electrochemical carbon nanotube filters for water and wastewater treatment. Nanotechnol Rev. 2016;5:41–50.
  • Ihsanullah. Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep Purif Technol. 2019;209:307–337. doi:10.1016/j.seppur.2018.07.043.
  • Flaten TP. Aluminium as a risk factor in Alzheimer’s disease, with emph] asis on drinking water. Brain Res Bull. 2001;55:187–196.
  • Wongpun J, Chanmanee T, Tocharus C, et al. The effects of festidinol treatment on the D-galactose and aluminum chloride–induced Alzheimer-like pathology in mouse brain. Phytomedicine [Internet]. 2022;98:153925. doi:10.1016/j.phymed.2022.153925.
  • Van Dyke N, Yenugadhati N, Birkett NJ, et al. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian Study of Health and Aging cohort. Neurotoxicology. 2021;83:157–165.
  • Silva Neto GC, Morais SN, Costa FdA, et al. O nível de concentração de alumínio na água como fator de risco para o desenvolvimento da doença de alvzheimer / The aluminum concentration level in water as a risk factor for the development of alzheimer’s disease. Brazilian J Heal Rev. 2020;3:15324–15339.
  • Ogunlade B, Adelakun SA, Agie JA. Nutritional supplementation of gallic acid ameliorates Alzheimer-type hippocampal neurodegeneration and cognitive impairment induced by aluminum chloride exposure in adult Wistar rats. Drug Chem Toxicol [Internet]. 2022;45:651–662. doi:10.1080/01480545.2020.1754849.
  • Khalifa M, Safar MM, Abdelsalam RM, et al. Telmisartan protects against aluminum-induced Alzheimer-like pathological changes in rats. Neurotox Res. 2020;37:275–285.
  • Lima DRS, Tonucci MC, Libânio M, et al. Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. Eng Sanit e Ambient. 2017;22:1043–1054.
  • Dhangar K, Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review. Sci Total Environ [Internet]. 2020;738:140320. doi:10.1016/j.scitotenv.2020.140320.
  • Tang L, Ma XY, Wang Y, et al. Removal of trace organic pollutants (pharmaceuticals and pesticides) and reduction of biological effects from secondary effluent by typical granular activated carbon. Sci Total Environ [Internet]. 2020;749:141611. doi:10.1016/j.scitotenv.2020.141611.
  • Lopes TdA, Heßler R, Bohner C, et al. Pesticides removal from industrial wastewater by a membrane bioreactor and post-treatment with either activated carbon, reverse osmosis or ozonation. J Environ Chem Eng. 2020;8(282):1–31.
  • Dong H, Xu L, Mao Y, et al. Effective abatement of 29 pesticides in full-scale advanced treatment processes of drinking water: from concentration to human exposure risk. J Hazard Mater [Internet]. 2021;403:123986. doi:10.1016/j.jhazmat.2020.123986.
  • Alves AdA, Ruiz GdO, Nonato TCM, et al. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply. Environ Technol (United Kingdom). 2019;40:1977–1987.
  • Debnath D, Gupta AK, Ghosal PS. Recent advances in the development of tailored functional materials for the treatment of pesticides in aqueous media: a review. J Ind Eng Chem [Internet]. 2019;70:51–69. doi:10.1016/j.jiec.2018.10.014.
  • Cosgrove S, Jefferson B, Jarvis P. Pesticide removal from drinking water sources by adsorption: a review. Environ Technol Rev. 2019;8:1–24.
  • Jatoi AS, Hashmi Z, Adriyani R, et al. Recent trends and future challenges of pesticide removal techniques - A comprehensive review. J Environ Chem Eng [Internet]. 2021;9:105571. doi:10.1016/j.jece.2021.105571.
  • Saleh IA, Zouari N, Al-Ghouti MA. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ Technol Innov [Internet]. 2020;19:101026. doi:10.1016/j.eti.2020.101026.
  • Puziy AM, Poddubnaya OI, Martínez-Alonso A, et al. Synthetic carbons activated with phosphoric acid. Carbon N Y. 2002;40:1493–1505.
  • Fanning PE, Vannice MA. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon N Y. 1993;31:721–730.
  • Fengel D. Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung. 1992;46:283–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.