204
Views
3
CrossRef citations to date
0
Altmetric
Articles

Suitability of pre-digested dairy effluent for mixotrophic cultivation of the hydrogen-producing microalgae Tetraselmis subcordiformis

ORCID Icon, , , , & ORCID Icon
Pages 471-482 | Received 09 May 2022, Accepted 06 Aug 2022, Published online: 22 Aug 2022

References

  • Dębowski M, Zieliński M, Kisielewska M, et al. The cultivation of lipid-rich microalgae biomass as anaerobic digestate valorization technology—A pilot-scale study. Processes. 2020;8:517), doi:10.3390/pr8050517.
  • Suparmaniam U, Lam MK, Uemur Y, et al. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable Sustainable Energy Rev. 2019;115:109361), doi:10.1016/j.rser.2019.109361.
  • Morillas-España A, Lafarga T, Acién-Fernández FG, et al. Annual production of microalgae in wastewater using pilot-scale thin-layer cascade photobioreactors. J Appl Phycol. 2021;33:3861–3871. doi:10.1007/s10811-021-02565-2.
  • Tuszynska A, Czerwionka K, Obarska-Pempkowiak H. Phosphorus concentration and availability in raw organic waste and post fermentation products. J Environ Manage. 2021;278:111468), doi:10.1016/j.jenvman.2020.111468.
  • Karolinczak B, Dąbrowski W, Żyłka R. Evaluation of dairy wastewater treatment systems using carbon footprint analysis. Energies. 2021;14:5366), doi:10.3390/en14175366.
  • Sheng L, Lei Z, Dzakpasu M, et al. Application of the anammox-based process for nitrogen removal from anaerobic digestion effluent: a review of treatment performance, biochemical reactions, and impact factors. Journal of Water Process Engineering. 2020;38:101595), doi:10.1016/j.jwpe.2020.101595.
  • Dębowski M, Dudek M, Zieliński M, et al. Microalgal hydrogen production in relation to other biomass-based technologies—A review. Energies. 2021;14:6025), doi:10.3390/en14196025.
  • Ferreira GF, Ríos Pinto LF, Carvalho PO, et al. Biomass and lipid characterization of microalgae genera botryococcus, chlorella, and desmodesmus aiming high-value fatty acid production. Biomass Conversion and Biorefinery. 2021;11:1675–1689. doi:10.1007/s13399-019-00566-3.
  • Fernández AFG, Gómez-Serrano C, Fernández-Sevilla JM. Applications of edible coatings formulated with antimicrobials inhibit listeria monocytogenes growth on queso fresco. Frontiers in Sustainable Food Systems. 2018;2:1–13. doi:10.3389/fsufs.2018.00001.
  • Kisielewska M, Zieliński M, Dębowski M, et al. Effectiveness of scenedesmus sp. biomass grow and nutrients removal from liquid phase of digestates. Energies. 2020;13:1432), doi:10.3390/en13061432.
  • Aratboni HA, Rafiei N, Garcia-Granados R, et al. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in bacillus subtilis. Microb Cell Fact. 2019;18:1–17. doi:10.1186/s12934-018-1049-x.
  • Guo Z, Li Y, Guo H. Effect of light/dark regimens on hydrogen production by tetraselmis subcordiformis coupled with an alkaline fuel cell system. Appl Biochem Biotechnol. 2017;183:1295–1303. doi:10.1007/s12010-017-2498-0.
  • S. Kosourov, M. Böhm, M. Senger, G. Berggren, K. Stensjö, F. Mamedov, Y. Allahverdiyeva, (2021). Photosynthetic hydrogen production: novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. Physiol Plant 173(555) 555-567. doi:10.1111/ppl.13428.
  • M. Kayfeci, A. Keçebaş, M. Bayat, 2019 Hydrogen production. Solar hydrogen production, Solar hydrogen production 45–83. doi:10.1016/B978-0-12-814853-2.00003-5
  • V. Nagy, A. Vidal-Meireles, A. Podmaniczki, K. Szentmihályi, G. Rákhely, L. Zsigmond,  S.Z. Tóth, The mechanism of photosystem-IIinactivation during sulphur deprivation-induced H2production in chlamydomonas reinhardtii, Plant J 94(3) (2018), 548–561.
  • Xiang Q, Wei X, Yang Z, et al. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. Sci Total Environ. 2021;781:146687), doi:10.1016/j.scitotenv.2021.146687.
  • E. Daneshvar, M.J. Zarrinmehr, E. Koutra, M. Kornaros, O. Farhadian, A. Bhatnagar, Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition, Bioresour Technol 273 (2019), 556-564. doi:10.1016/j.biortech.2018.11.059
  • Ahmed SF, Mofijur M, Parisa TA, … Ong HC. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere. 2022;286:131656), doi:10.1016/j.chemosphere.2021.131656.
  • Chan SS, Khoo KS, Chew KW, et al. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium - A review. Bioresour Technol. 2022;344; doi:10.1016/j.biortech.2021.126159.
  • Dębowski M, Zieliński M, Kazimierowicz J, et al. Microalgae cultivation technologies as an opportunity for bioenergetic system development—advantages and limitations. Sustainability. 2020;12(23):9980), doi:10.3390/su12239980.
  • Gupta SK, Sriwastav A, Ansari FA, et al. Phytoremediation potential of bioenergy plants. Phytoremediation Potential of Bioenergy Plants. 2017: 431–456. doi:10.1007/978-981-10-3084-0_18.
  • Gupta SK, Chabukdhara M, Singh J, et al. Evaluation and potential health hazard of selected metals in water, sediments, and fish from the gomti river. Human and Ecological Risk Assessment: An International Journal. 2015;21(1):227–240. doi:10.1080/10807039.2014.902694.
  • Singh B, Guldhe A, Singh P, et al. Applied environmental biotechnology: present scenario and future trends. Applied Environmental Biotechnology: Present Scenario and Future Trends. 2015: 115–128. doi:10.1007/978-81-322-2123-4_8.
  • Guan Y, Deng M, Yu X, et al. Two-stage photo-biological production of hydrogen by marine green alga platymonas subcordiformis. Biochem Eng J. 2004;19(1):69–73. doi:10.1016/j.bej.2003.10.006.
  • Zieliński M, Dębowski M, Kazimierowicz J. Microwave radiation influence on dairy waste anaerobic digestion in a multi-section hybrid anaerobic reactor (M-SHAR). Processes. 2021;9:1772), doi:10.3390/pr9101772.
  • Hwang JH, Lee WH. Continuous photosynthetic biohydrogen production from acetate-rich wastewater: influence of light intensity. Int J Hydrogen Energy. 2021;46(42):21812–21821. doi:10.1016/j.ijhydene.2021.04.052.
  • R. Jimenez, G. Markou, S. Tayibi, A. Barakat, C. Chapsal, F. Monlau, Production of microalgal slow-release fertilizer by valorizing liquid agricultural digestate: growth experiments with tomatoes. Applied Sciences 10(11) (2020), 3890. doi:10.3390/app10113890
  • Javed F, Aslamb M, Rashid N, et al. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel. 2019;255:115826), doi:10.1016/j.fuel.2019.115826.
  • Muñoz R, Kollner C, Guieysse B, et al. Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol Bioeng. 2004;87:797–803. doi:10.1002/bit.20204.
  • Ali S, Paul Peter A, Chew KW, et al. Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresour Technol. 2021, 337: 125461–125348. doi:10.1016/j.biortech.2021.125461.
  • Goswami RK, Mehariya S, Verma P, et al. Microalgae-based biorefineries for sustainable resource recovery from wastewater. Journal of Water Process Engineering. 2021;40:101747–101463. doi:10.1016/j.jwpe.2020.101747.
  • Ahmed SF, Mofijur M, Parisa TA, … Ong HC. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere. 2022;286:131656), doi:10.1016/j.chemosphere.2021.131656.
  • Hawrot-Paw M, Koniuszy A, Gałczyńska M, et al. Production of microalgal biomass using aquaculture wastewater as growth medium. Water (Basel). 2020;12:106), doi:10.3390/w12010106.
  • Chinnasamy S, Bhatnagar A, Hunt RW, et al. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol. 2010;101:3097–3105. doi:10.1016/j.biortech.2009.12.026.
  • Hajar HAA, Riefler RG, Stuart BJ. Anaerobic digestate as a nutrient medium for the growth of the green microalga neochloris oleoabundans. Environmental Engineering Research. 2016;21:265–275. doi:10.4491/eer.2016.005.
  • Fernandes TV, Suárez-Muñoz M, Trebuch LM, et al. Toward an ecologically optimized N:P recovery from wastewater by microalgae. Front Microbiol. 2017;8:1742). doi:10.3389/fmicb.2017.01742.
  • Yu H, Kim J, Lee C. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with chlorella species. Sci Rep. 2019;9:6123.
  • Budiyono, B., I., Syaichurrozi, S., Sumardiono, S. Budi Sasongko. Production of spirulina platensis biomass using digested vinasse as cultivation medium. Trends Appl Sci Res. 2014;9:93–102. doi:10.3923/tasr.2014.93.102.
  • Arias DM, Uggetti E, García-Galán MJ, et al. Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Sci Total Environ. 2017;587-588:157–167. doi:10.1016/j.scitotenv.2017.02.097.
  • Guo Z, Liu Y, Guo H, et al. Microalgae cultivation using an aquaculture wastewater as growth medium for bio-mass and biofuel production. J Environ Sci. 2013;25:S85–S88.
  • Wang J, Zhou W, Chen H, et al. Ammonium nitrogen tolerant chlorella strain screening and its damaging effects on photosynthesis. Front Microbiol. 2019;9:3250), doi:10.3389/fmicb.2018.03250.
  • Markou G, Muylaert K. Effect of light intensity on the degree of ammonia toxicity on PSII activity of arthrospira platensis and chlorella vulgaris. Bioresour Technol. 2016;216:453–461. doi:10.1016/j.biortech.2016.05.094.
  • Collos Y, Harrison PJ. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull. 2014;80:8–23. doi:10.1016/j.marpolbul.2014.01.006.
  • Muñoz R, Jacinto M, Guieysse B, et al. Combined carbon and nitrogen removal from acetonitrile using algal–bacterial bioreactors. Appl Microbiol Biotechnol. 2005;67:699–707. doi:10.1007/s00253-004-1811-3.
  • Ogbonna JC, Yoshizawa H, Tanaka H. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol. 2000;12:277–284. doi:10.1023/A:1008188311681.
  • Faraloni C, Ena A, Pintucci C, et al. Enhanced hydrogen production by means of sulfur-deprived chlamydomonas reinhardtii cultures grown in pretreated olive mill wastewater. Int J Hydrogen Energy. 2011;36:5920–5931. doi:10.1016/j.ijhydene.2011.02.007.
  • Ran C, Zhang F, Sun H, et al. Effect of culture medium on hydrogen production by sulfur-deprived marine green algae platymonas subcordiformis. Biotechnol Bioprocess Eng. 2009;14:835–841. doi:10.1007/s12257-008-0287-x.
  • Ogbonna JC, Tanaka H. Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of chlorella pyrenoidosa. J Ferment Bioeng. 1996;82:558–564. doi:10.1016/S0922-338X(97)81252-4.
  • Guan Y, Deng M, Yu X, et al. Two-stage photo-biological production of hydrogen by marine green alga platymonas subcordiformis. Biochem Eng J. 2004;19:69–73. doi:10.1016/j.bej.2003.10.006.
  • Guo Z, Chen Z, Zhang W, et al. Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga platymonas subcordiformis grown in CO2-supplemented air bubble column bioreactor. Biotechnol Lett. 2008;30:877–883. doi:10.1007/s10529-008-9637-1.
  • Ji CF, Legrand J, Pruvost J, et al. Characterization of hydrogen production by platymonas subcordiformis in torus photobioreactor. Int J Hydrogen Energy. 2010;35:7200–7205. doi:10.1016/j.ijhydene.2010.02.085.
  • Ji CF, Yu XJ, Chen ZA, et al. Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of tetraselmis subcordiformis. Int J Hydrogen Energy. 2011;36:5817–5821. doi:10.1016/j.ijhydene.2010.12.138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.