172
Views
4
CrossRef citations to date
0
Altmetric
Articles

Performance of an anaerobic–oxic–anoxic (AOA) system in the simultaneous removal of nutrients and triclosan and bacterial community

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 544-558 | Received 29 Apr 2022, Accepted 10 Aug 2022, Published online: 25 Aug 2022

References

  • Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci Total Environ. 2011;409:4141–4166. doi:10.1016/j.scitotenv.2010.08.061.
  • Luo Y, Guo W, Ngo HH, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473-474:619–641. doi:10.1016/j.scitotenv.2013.12.065.
  • Nam S-W, Jo B-I, Yoon Y, et al. Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere. 2014;95:156–165. doi:10.1016/j.chemosphere.2013.08.055.
  • Yang Y, Ok YS, Kim K-H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci Total Environ. 2017;596-597:303–320. doi:10.1016/j.scitotenv.2017.04.102.
  • Martínez C, Ramírez N, Gómez V, et al. Simultaneous determination of 76 micropollutants in water samples by headspace microextraction and gas chromatography–mass spectrometry. Talanta. 2013;116:937–945. doi:10.1016/j.talanta.2013.07.055.
  • Sudhakaran S, Lattemann S, Amy GL. Appropriate drinking water treatment processes for organic micropollutants removal based on experimental and model studies — A multi-criteria analysis study. Sci Total Environ. 2013;442:478–488. doi:10.1016/j.scitotenv.2012.09.076.
  • Drury B, Scott J, Rosi-Marshall EJ, et al. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 2013;47(15):8923–8930. doi:10.1021/es401919k.
  • Montagner CC, Jardim WF, Von der Ohe PC, et al.. Occurrence and potential risk of triclosan in freshwaters of São Paulo, Brazil—the need for regulatory actions. Environ Sci Pollut Res. 2014;21(3):1850–1858. doi:10.1007/s11356-013-2063-5.
  • Montagner CC, Sodré FF, Acayaba RD, et al.. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J Braz Chem Soc. 2018;30(3):614–632. doi:10.21577/0103-5053.20180232.
  • Campanha MB, Awan AT, de Sousa DNR, et al.. A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of southeast Brazil. Environ Sci Pollut Res. 2015;22:7936–7947. doi:10.1007/s11356-014-3929-x.
  • Sikosana MI, Sikhwivhilu K, Moutloali R, et al. Municipal wastewater treatment technologies: A review. Procedia Manuf. 2019;35:1018–1024. doi:10.1016/j.promfg.2019.06.051.
  • Shi X, Leong KY, Ng HY. Anaerobic treatment of pharmaceutical wastewater: A critical review. Bioresour Technol 2017;245:1238–1244. doi:10.1016/j.biortech.2017.08.150.
  • di Biase A, Kowalski MS, Devlin TR, et al. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. J Environ Manage. 2019;247:849–866. doi:10.1016/j.jenvman.2019.06.053.
  • Grandclément C, Seyssiecq I, Piram A, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 2017;111:297–317. doi:10.1016/j.watres.2017.01.005.
  • Ahmed MB, Zhou JL, Ngo HH, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J Hazard Mater 2017;323:274–298. doi:10.1016/j.jhazmat.2016.04.045.
  • Casas ME, Chhetri RK, Ooi G, et al. Biodegradation of pharmaceuticals in hospital wastewater by staged moving Bed biofilm reactors (MBBR). Water Res 2015;83:293–302. doi:10.1016/j.watres.2015.06.042.
  • Vendramel S, Bassin JP, Dezotti M, et al. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor. Environ Technol. 2015;36:2052–2059. doi:10.1080/09593330.2015.1019933.
  • Ferro TN, Carvalho KQ, Lima MX, et al. Influence of HRT and carbon source on the enhancement of nutrient removal in an anaerobic-oxic-anoxic (AOA) system. Environ Technol, doi:10.1080/09593330.2021.1882586.
  • Cabral LL, Pereira IC, Perretto F, et al. Adsorption and desorption of phosphate onto chemically and thermochemically pre-activated red ceramic waste: characteristics, batch studies, and mechanisms. J Environ Chem Eng. 2021;9(6):106695, doi:10.1016/j.jece.2021.106695.
  • Huang C, Shi Y, Xue J, et al. Comparison of biomass from integrated fixed-film activated sludge (IFAS), moving bed biofilm reactor (MBBR) and membrane bioreactor (MBR) treating recalcitrant organics: importance of attached biomass. J Hazard Mater 2017;326:120–129. doi:10.1016/j.jhazmat.2016.12.015.
  • Marcelino GR, Carvalho KQ, Lima MX, et al. Construction waste as substrate in vertical subsuperficial constructed wetlands treating organic matter, ibuprofenhene, Acetaminophen and ethinylestradiol from low-strength synthetic wastewater. Sci Total Environ. 2020;728:138771, doi:10.1016/j.scitotenv.2020.138771.
  • Torres P. Desempenho de um reator anaeróbio de manta de lodo (UASB) de bancada no tratamento de substrato sintético simulando esgoto sanitário sob diferentes condições de operação [dissertation]. São Carlos: University of São Paulo; 1992.
  • Osachoff HL, Mohammadali M, Skirrow RC, et al. Evaluating the treatment of a synthetic wastewater containing a pharmaceutical and personal care product chemical cocktail: compound removal efficiency and effects on juvenile rainbow trout. Water Res 2014;62:271–280. doi:10.1016/j.watres.2014.05.057.
  • Philips S, Laanbroek HJ, Verstraete W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Bio/Technol. 2002;1:115–141. doi:10.1023/A:1020892826575.
  • APHA. Standard methods for the examination of water and wastewater. 23rd ed. Washington (DC): American Public Health Association; 2017.
  • Ripley LE, Boyle WC, Converse JC. Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed. 1986;58:406–411.
  • Petrie B, McAdam EJ, Lester JN, et al. Obtaining process mass balances of pharmaceuticals and triclosan to determine their fate during wastewater treatment. Sci Total Environ. 2014;497-498:553–560. doi:10.1016/j.scitotenv.2014.08.003.
  • Bernardelli JKB, Liz MV, Belli TJ, et al. Removal of estrogens by activated sludge under different conditions using batch experiments. Braz J Chem Eng. 2015;32(2):421–432. doi:10.1590/0104-6632.20150322s00003667.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. doi:10.1038/nmeth.f.303.
  • Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 2019;37:852–857. doi:10.1038/s41587-019-0209-9.
  • Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. Dada2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–583. doi:10.1038/nmeth.3869.
  • DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069–5072. doi:10.1128/AEM.03006-05.
  • Guo J, Zhang L, Chen W, et al. The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures. Bioresour Technol 2013;133:59–67. doi:10.1016/j.biortech.2013.01.026.
  • Alvarino T, Suárez S, Garrido M, et al. A UASB reactor coupled to a hybrid aerobic MBR as innovative plant configuration to enhance the removal of organic micropollutants. Chemosphere. 2016;144:452–458. doi:10.1016/j.chemosphere.2015.09.016.
  • Ribeiro R, von Atzingen GV, Lima F, et al. Real-time control system based on the values of derivative of the redox potential aiming nitrogen removal in a sequencing batch reactor applied in treating dairy wastewater. Water Air Soil Pollut. 2017: 228–231. doi:10.1007/s11270-017-3401-x.
  • Zhao W, Zhang Y, Lv D, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A 2 NSBR) treating low carbon/nitrogen (C/N) wastewater. Chem Eng J. 2016;302:296–304. doi:10.1016/j.cej.2016.05.012.
  • Liu G, Xu X, Zhu L, et al. Biological nutrient removal in a continuous anaerobic–aerobic–anoxic process treating synthetic domestic wastewater. Chem Eng J. 2013;225:223–229. doi:10.1016/j.cej.2013.01.098.
  • Semerci N, Hasilci NB. Fate of carbon, nitrogen and phosphorus removal in a post-anoxic system treating low strength wastewater. Int Biodeterior Biodegradation. 2016;108:166–174. doi:10.1016/j.ibiod.2015.12.008.
  • Brasil. CONAMA - Conselho Nacional do Meio Ambiente. Resolução 430 de 13 de Maio de 2011 (in portuguese).
  • Zekker I, Raudkivi M, Artemchuk O, et al. Mainstream-sidestream wastewater switching promotes anammox nitrogen removal rate in organic-rich, low-temperature streams. Environ Technol. 2021, doi:10.1080/09593330.2020.1721566.
  • Zekker I, Artemchuk O, Rikmann E, et al. Start-Up of anammox SBR from Non-specific inoculum and process acceleration methods by hydrazine. Water (Basel). 2021;13:350, doi:10.3390/w13030350.
  • Barana AC, Lopes DD, Martins TH, et al. Nitrogen and organic matter removal in an intermittently aerated fixed-bed reactor for post-treatment of anaerobic effluent from a slaughterhouse wastewater treatment plant. J Environ Chem Eng. 2013;1(3):453–459. doi:10.1016/j.jece.2013.06.015.
  • Zhao W, Wang M, Li J, et al. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration + nitrification sequence batch reactor (pre-A2NSBR) system: nitrate recycling, carbon/nitrogen ratio and carbon source type. Front Environ Sci Eng. 2018;12:8, doi:10.1007/s11783-018-1084-1.
  • Zekker I, Mandel A, Rikmann E, et al. Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. Sci Total Environ. 2021;797:149133–149133. doi:10.1016/j.scitotenv.2021.149133.
  • Luo Y, Guo W, Ngo HH, et al. Removal and fate of micropollutants in a sponge-based moving bed bioreactor. Bioresour Technol. 2014;159:311–319. doi:10.1016/j.biortech.2014.02.107.
  • Dong X, He Y, Peng X, et al. Triclosan in contact with activated sludge and its impact on phosphate removal and microbial community. Bioresour Technol 2021;319:124134–124134. doi:10.1016/j.biortech.2020.124134.
  • Orhon AK, Orhon KB, Yetis U, et al. Fate of triclosan in laboratory-scale activated sludge reactors - effect of culture acclimation. J Environ Manage 2018;216:320–327. doi:10.1016/j.jenvman.2017.07.048.
  • Nie Y, Chen R, Tian X, et al. Characterization of the effect of surfactant on biomass adaptation and microbial community in sewage treatment by anaerobic membrane bioreactor. J Ind Eng Chem. 2019;76:268–276. doi:10.1016/j.jiec.2019.03.051.
  • Ye J, Liang J, Wang L, et al. Operation optimization of a photo-sequencing batch reactor for wastewater treatment: study on influencing factors and impact on symbiotic microbial ecology. Bioresour Technol. 2018;252:7–13. doi:10.1016/j.biortech.2017.12.086.
  • Liu J, Yuan Y, Li B, et al. Enhanced nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor with sludge fermentation products as carbon source. Bioresour Technol 2017;244:1158–1165. doi:10.1016/j.biortech.2017.08.055.
  • He Q, Song Q, Zhang S, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sequencing batch reactor with mixed carbon sources: reactor performance, extracellular polymeric substances and microbial successions. Chem Eng J. 2018;331:841–849. doi:10.1016/j.cej.2017.09.060.
  • Liu S, Daigger GT, Liu B, et al. Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times. Bioresour Technol 2020;301:122750, doi:10.1016/j.biortech.2020.122750.
  • Shen Z, Zhou Y, Hu J, et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. J Hazard Mater 2013;250-251:431–438. doi:10.1016/j.jhazmat.2013.02.026.
  • Lu H, Chandran K, Stensel D. Microbial ecology of denitrification in biological wastewater treatment. Water Res 2014;64:237–254. doi:10.1016/j.watres.2014.06.042.
  • Dai H, Gao J, Wang S, et al. The key active degrader, metabolic pathway and microbial ecology of triclosan biodegradation in an anoxic/oxic system. Bioresour Technol 2020;317:124014, doi:10.1016/j.biortech.2020.124014.
  • Dai H, Gao J, Li D, et al. Metagenomics combined with DNA-based stable isotope probing provide comprehensive insights of active triclosan-degrading bacteria in wastewater treatment. J Hazard Mater 2021;404:124192, doi:10.1016/j.jhazmat.2020.124192.
  • Zhang D, Gao J, Zhang L, et al. Responses of nitrification performance, triclosan resistome and diversity of microbes to continuous triclosan stress in activated sludge system. J Environ Sci. 2020;92:211–223. doi:10.1016/j.jes.2020.02.023.
  • Wu Z-L, Lin Z, Sun Z-Y, et al. A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: reactor performance and microbial community. Bioresour Technol 2020;302:122851, doi:10.1016/j.biortech.2020.122851.
  • Yang B, Wang J, Wang J, et al. Correlating microbial community structure with operational conditions in biological aerated filter reactor for efficient nitrogen removal of municipal wastewater. Bioresour Technol 2018;250:374–381. doi:10.1016/j.biortech.2017.11.065.
  • Niu W, Guo J, Lian J, et al. Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochem Eng J 2018;132:29–37. doi:10.1016/j.bej.2017.12.017.
  • Li W, Li YJ, Lee SM-Y, et al. Nitrogen removal in moving Bed sequencing batch reactors with polyurethane foam cube and luffa sponge carrier materials. J Environ Eng. 2019;145(6):04019025, doi:10.1061/(ASCE)EE.1943-7870.0001534.
  • Souza A, Batista AMM, Leal CD, et al. Evaluation of nitrogen removal and the microbial community in a submerged aerated biological filter (SABF), secondary decanters (SD), and horizontal subsurface flow constructed wetlands (HSSF-CW) for the treatment of kennel effluent. Environ Sci Pollut Res. 2020;27:43125–43137. doi:10.1007/s11356-020-10263-8.
  • Phan H, Hai F, Zhang R, et al. Bacterial community dynamics in an anoxic-aerobic membrane bioreactor – impact on nutrient and trace organic contaminant removal. Int Biodeterior Biodegradation. 2016;109:61–72. doi:10.1016/j.ibiod.2016.01.002.
  • Aguilar-Romero I, Romero E, Wittich R, et al. Bacterial ecotoxicity and shifts in bacterial communities associated with the removal of ibuprofen, diclofenac and triclosan in biopurification systems. Sci Total Environ. 2020;741:140461, doi:10.1016/j.scitotenv.2020.140461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.