158
Views
0
CrossRef citations to date
0
Altmetric
Articles

A novel biomethane (BMP) and composting (CMP) potential framework for determining biogas and composting potential of urban organic waste

, ORCID Icon, ORCID Icon &
Pages 1471-1482 | Received 10 Jul 2022, Accepted 02 Nov 2022, Published online: 27 Nov 2022

References

  • Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. 2019;16(6). doi:10.3390/ijerph16061060.
  • Alam P, Ahmade K. Impact of solid waste on health and the environment. Int J Sustain Dev. 2013;2(1):165–168. Available from: http://irnet.sg/irnet_journal/IJSDGE/IJSDGE_doc/IJSDGE_V2I1,2_papers/31.pdf.
  • Kaza S, Yao L, Bhada-Tata P, et al. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington (DC): World Bank Publications; 2018.
  • Srivastava V, Ismail SA, Singh P, et al. Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol. 2015;14(2):317–337. doi:10.1007/s11157-014-9352-4.
  • Zaman AU, Lehmann S. Urban growth and waste management optimization towards “zero waste city”. City Cult Soc. 2011;2(4):177–187. doi:10.1016/j.ccs.2011.11.007.
  • Abas MA, Wee ST. Municipal solid waste management in Malaysia: an insight towards sustainability. SSRN Electron J. 2014;January 2015; doi:10.2139/ssrn.2714755.
  • Hoornweg D, Bhada-Tata P. (2012). What a waste. a global review of solid waste management. macrocognition metrics and scenarios: design and evaluation for real-world teams, (No. 15), 1. Available from: https://openknowledge.worldbank.org/handle/10986/17388.
  • Karnchanawong S, Suriyanon N. Household organic waste composting using bins with different types of passive aeration. Resour Conserv Recycl. 2011;55(5):548–553. doi:10.1016/j.resconrec.2011.01.006.
  • Selin E. Sustainable municipal solid waste management - a qualitative study on possibilities and solutions in. (June), 2013.
  • Krstic II, Radosavljević J, Djordjević A, et al. Composting As a method of biodegradable waste management. Facta Universitatis, Ser: Working Living Environ Prot. 2019;135. doi:10.22190/fuwlep1802135i.
  • Abalo EM, Peprah P, Nyonyo J, et al. A review of the triple gains of waste and the Way forward for Ghana. J Renew Energy. 2018;2018:1–12. doi:10.1155/2018/9737683.
  • Butar-Butar ES, Mutiara, Priantoro EA, et al. Potential of organic waste from Caringin Central Market as raw material for biogas and compost. IOP Conference Series: Earth Environ Sci. 2020;483(1). doi:10.1088/1755-1315/483/1/012019.
  • Thenabadu M. Anaerobic digestion of food and market waste; waste characterisation and biomethane potential: a case study in Sri Lanka. SLEMA J. 2015;18(2):29. doi:10.4038/slemaj.v18i2.18.
  • Garcia AP. Techno-economic feasibility study of a small-scale biogas plant for treating market waste in the city of El Alto. Independen. 2014;67. Available from: http://kth.diva-portal.org/smash/get/diva2:741758/FULLTEXT01.pdf%0Ahttp://urn.kb.se/resolve?urn = urn:nbn:se:kth:diva-149953.
  • Öberg H. A GIS-based study of sites for decentralized composting and waste sorting stations in Kumasi, Ghana. Sustain Dev. 2011.
  • Ghana Statistical Service. (2014). District analytical report. Kumasi metropolitan. 92. Available from: www.statsghana.gov.gh.
  • Osei RK. Solid waste management challenges in Bantama Sub- Metro, Kumasi, 2014.
  • Ofori-agyeman C. (2016). Assessment of quantity of coconut waste generated and management in the Kumasi Metropolis, Ghana. 1–47.
  • Adu-Gyamfi S, Adjei PO-W, Tetteh C. The waste management department of the metropolitan assembly of a city in Ghana (1992–2016): an Evidence Based Assessment from a People, 2017.
  • Asante LA, Ehwi RJ. Housing transformation, rent gap and gentrification in Ghana’s traditional houses: insight from compound houses in bantama, kumasi. Hous Stud. 2020;0(0):1–27. doi:10.1080/02673037.2020.1823331.
  • Akuamoa-Boateng A. (2014). Bantama market clinic report enhancing women ‘ s lives : market clinic brings healthcare and credit to women traders. (July).
  • Okalebo JR, Gathua KW, Woomer PL. (2002). Laboratory methods of soil and plant analysis: a working manual second edition. Sacred Africa, Nairobi, 21.
  • Nelson DW, Sommers L. Total carbon, organic carbon, and organic matter. Meth Soil Anal: Part 2 Chem Microbiol Prop. 1983;9:539–579.
  • Li Y, Zhang R, Liu G, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol. 2013;149:565–569.
  • Canet R, Pomares F, Cabot B, et al. Composting olive mill pomace and other residues from rural southeastern Spain. Waste Manage. 2008;28(12):2585–2592.
  • Mohee R, Mudhoo A. Analysis of the physical properties of an in-vessel composting matrix. Powder Technol. 2005;155(1):92–99.
  • Calisti R, Regni L, Proietti P. Compost-recipe: a new calculation model and a novel software tool to make the composting mixture. J Cleaner Prod. 2020;270:122427.
  • Rynk R, Van de Kamp M, Willson GB, et al. On-Farm Composting Handbook (NRAES 54). Northeast Regional Agricultural Engineering Service (NRAES), 1992.
  • Degueurce A, Picard S, Peu P, et al. Storage of food waste: variations of physical–chemical characteristics and consequences on biomethane potential. Waste Biomass Valorization. 2019;11(6):2441–2454.
  • Nayono SE. Anaerobic digestion of organic solid waste for energy production (Vol. 46). Amsterdam: KIT scientific Publishing; 2010.
  • Marjolaine. Wet and dry anaerobic digestion systems – biogasworld, 2021 [cited 2021 May 23]. Available from: https://www.biogasworld.com/news/dry-wet-anaerobic-digestion-systems/.
  • Li Y, Luo W, Lu J, et al. Effects of digestion time in anaerobic digestion on subsequent digestate composting. Bioresour Technol. 2018;267:117–125.
  • Holliger C, de Laclos HF, Hack G. Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Front Energy Res. 2017;5(JUN). https://doi.org/10.3389/fenrg.2017.00012.
  • Mohammed M, Egyir IS, Donkor AK, et al. Feasibility study for biogas integration into waste treatment plants in Ghana. Egyptian J Petroleum. 2017;26(3):695–703.
  • Cedrez CB, Chamberlin J, Guo Z, et al. Spatial variation in fertilizer prices in Sub-Saharan Africa. PloS One. 2020;15(1):e0227764.
  • Adelekan BA, Bamgboye AI. Comparison of biogas productivity of cassava peels mixed in selected ratios with major livestock waste types. African J Agr Res. 2009;4(7):571–577.
  • Nkodi TM, Taba KM, Kayembe S, et al. Biogas production by co-digestion of cassava peels with urea. Int J Sci Eng Technol. 2016;55(3):139–141. doi:10.17950/ijset/v5s3/303.
  • Rodrigues ALP, Cruz G, Souza ME, et al. Application of cassava harvest residues (Manihot esculenta Crantz) in biochemical and thermochemical conversion process for bioenergy purposes: a literature review. Afr J Biotechnol. 2018;17(3):37–50. doi:10.5897/ajb2017.16322.
  • Nwoko CI, Enyinnaya OC, Okolie JI. The proximate analysis and biochemical composition of the waste peels of three cassava cultivars. Int J Sci Eng Appl Sci. 2016;211:2395–3470. Available from: www.ijseas.com.
  • Oyaro DK, Oonge ZI, Odira PM. Anaerobic digestion of banana wastes for biogas production. J Civil Environ Eng. 2020;10:3. doi:10.37421/jcce.2020.10.347.
  • Shravan R, Shere DM, M JM. Study of physico-chemical characteristics of sweet orange (citrus sinensis) fruit. J Pharmacogn Phytochemistry Vitamin. 2018;7(6):1687–1689.
  • Santos LAd, Valença RB, Silva LCSd, et al. Methane generation potential through anaerobic digestion of fruit waste. J Cleaner Prod. 2020a;256(February). doi:10.1016/j.jclepro.2020.120389.
  • Viswanath P, Sumithra Devi S, Nand K. Anaerobic digestion of fruit and vegetable processing wastes for biogas production. Bioresour Technol. 1992;40(1):43–48. doi:10.1016/0960-8524(92)90117-G.
  • Banks C. Anaerobic digestion and energy. University of Southampton, School of Civil Engineering and the Environment, 7–18, 2009.
  • Thomsen ST. (2014). Bioenergy in Ghana Biogas and ethanol from agricultural residues.
  • Santos LAd, Valença RB, Silva LCSd, et al. Methane generation potential through anaerobic digestion of fruit waste. J Cleaner Prod. 2020b;256; doi:10.1016/j.jclepro.2020.120389.
  • Rani DS, Nand K. Ensilage of pineapple processing waste for methane generation. Waste Manage. 2004;24(5):523–528.
  • Kamau J, Mwaura FB, Mwaniki J. Biochemical methane potential (BMP) of market wastes from Nairobi inoculated with dagoretti slaughterhouse waste. Int J Sci Res Sci, En Technol. 2020;81–90. doi:10.32628/ijsrset207418.
  • Yan H, Zhao C, Zhang J, et al. Study on biomethane production and biodegradability of different leafy vegetables in anaerobic digestion. AMB Express. 2017;7(1):1–9. doi:10.1186/s13568-017-0325-1.
  • Chulalaksananukul S, Sinbuathong N, Chulalaksananukul W. (2012). Bioconversion of pineapple solid waste under anaerobic condition through biogas production.
  • Gunaseelan VN. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy. 2004;26(4):389–399. doi:10.1016/j.biombioe.2003.08.006.
  • Sangodoyin AY, Amori AA. Aerobic composting of cassava peels using cow dung, sewage sludge and poultry manure as supplements. European Int J Sci Technol. 2013;2(8):22–34.
  • Ubalua AO. Cassava wastes: treatment options and value addition alternatives. Afr J Biotechnol. 2007;6(18):2065–2073.
  • Gelsomino A, Abenavoli MR, Princi G, et al. Compost from fresh orange waste: a suitable substrate for nursery and field crops? Compost Sci Util. 2010;18(3):201–210.
  • Lohri CR, Diener S, Zurbrügg C. (2014). Anaerobic digestion of biowaste in developing countries. In Sandec: Department of Water and Sanitation in Developing Countries. https://doi.org/10.13140/2.1.2663.1045.
  • Mohee R, Unmar G. Determining biodegradability of plastic materials under controlled and natural composting environments. Waste management. 2007;27(11):1486–1493.
  • Dmitrieva A. (2020). What condition makes the value of IRR greater than 100%? | Business Accounting [cited 2021 May 23]. Available from: https://business-accounting.net/what-condition-makes-the-value-of-irr-greater-than/.
  • Bensah EC, Brew HA. Biogas technology dissemination in Ghana: history, current status, future prospects, and policy significance. Int J Energy Environ. 2010;1(2):277–294.
  • Jingura RM, Kamusoko R. Methods for determination of biomethane potential of feedstocks: a review. Biofuel Research Journal. 2017;4(2):573–586. doi:10.18331/BRJ2017.4.2.3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.