271
Views
4
CrossRef citations to date
0
Altmetric
Articles

A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H2O2 generation and its application in electro-Fenton

, , , , , & ORCID Icon show all
Pages 1669-1682 | Received 26 Jun 2022, Accepted 11 Nov 2022, Published online: 06 Dec 2022

References

  • Zhu W, Li Y, Gao Y, et al. A new method to fabricate the cathode by cyclic voltammetric electrodeposition for electro-Fenton application. Electrochim Acta. 2020;349:136415. doi:10.1016/j.electacta.2020.136415.
  • Mi X, Han J, Sun Y, et al. Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors,: reaction mechanism and pathways. J Hazard Mater. 2019;367:365–374. doi:10.1016/j.jhazmat.2018.12.074.
  • Gao Y, Zhu W, Li Y, et al. Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process. Int J Hydrogen Energy. 2021;46:9707–9717. doi:10.1016/j.ijhydene.2020.04.197.
  • Ye Z, Guelfi DRV, Álvarez G, et al. Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Appl Catal, B. 2019;247:191–199. doi:10.1016/j.apcatb.2019.01.029.
  • Gao Y, Zhu W, Liu J, et al. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal. Appl Catal, B. 2021;295:120273. doi:10.1016/j.apcatb.2021.120273.
  • Gao Y, Zhu W, Li J, et al. Anthraquinone acted as a catalyst for the removal of triphenylmethane dye containing tertiary amino group: Characteristics and mechanism. J Environ Sci. 2022;121:148–158. doi:10.1016/j.jes.2021.09.024.
  • Li J, Zhu W, Gao Y, et al. The catalyst derived from the sulfurized Co-doped metal–organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal. Sep Purif Technol. 2022;285:120362. doi:10.1016/j.seppur.2021.120362.
  • Xie F, Zhu W, Lin P, et al. A bimetallic (Co/Fe) modified nickel foam (NF) anode as the peroxymonosulfate (PMS) activator: Characteristics and mechanism. Sep Purif Technol. 2022;296:121429. doi:10.1016/j.seppur.2022.121429.
  • Moreira Pinto AR, Martins CR, Carvalho J, et al. Degradation of amoxicillin applying photo-Fenton and acid hydrolysis processes with toxicity evaluation via antimicrobial susceptibility tests. Environ Technol. 2022: 1–12. doi:10.1080/09593330.2022.2089056.
  • Lin P, Zhu W, Gao Y, et al. Characteristics and mechanism of electrochemical peroxymonosulfate activation by a Co–N@CF anode for pollutant removal. Environ Sci: Water Res Technol. 2022;8:62–75. doi:10.1039/D1EW00676B.
  • Mei W, Song H, Tian Z, et al. Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: regulation of photogenerated electron migration. Mater Res Bull. 2019;119:110570. doi:10.1016/j.materresbull.2019.110570.
  • Zhu Y, Qiu S, Deng F, et al. Enhanced degradation of sulfathiazole by electro-Fenton process using a novel carbon nitride modified electrode. Carbon N Y. 2019;145:321–332. doi:10.1016/j.carbon.2019.01.032.
  • Zhang B, Hou Y, Yu Z, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: electrodes optimization, kinetics, influencing factors and mechanism. Sep Purif Technol. 2019;210:60–68. doi:10.1016/j.seppur.2018.07.084.
  • Haider MR, Jiang W-L, Han J-L, et al. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants. Appl Catal, B. 2019;256:117774. doi:10.1016/j.apcatb.2019.117774.
  • Wang Y, Zhang H, Li B, et al. γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole. Chem Eng J. 2019;359:914–923. doi:10.1016/j.cej.2018.11.096.
  • Mi X, Li Y, Ning X, et al. Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: enhanced redox capacity and accelerated electron transfer. Chem Eng J. 2019;358:299–309. doi:10.1016/j.cej.2018.10.047.
  • Li Y, Luo N, Tian Z, et al. H2O2-free photo-Fenton degradation of organic pollutants on thermally exfoliated g-C3N4. Colloids Surf, A. 2020;586:124190. doi:10.1016/j.colsurfa.2019.124190.
  • Chen Y, Li Y, Luo N, et al. Kinetic comparison of photocatalysis with H2O2-free photo-Fenton process on BiVO4 and the effective antibiotic degradation. Chem Eng J. 2022;429:132577. doi:10.1016/j.cej.2021.132577.
  • Zhao H, Chen Y, Peng Q, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo–electro–Fenton process. Appl Catal, B. 2017;203:127–137. doi:10.1016/j.apcatb.2016.09.074.
  • Cao P, Quan X, Zhao K, et al. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. J Hazard Mater. 2020;382:121102. doi:10.1016/j.jhazmat.2019.121102.
  • Sun C, Chen T, Huang Q, et al. Biochar cathode: Reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry. Sci Total Environ. 2020;754:142136. doi:10.1016/j.scitotenv.2020.142136.
  • Tan N, Yang Z, Gong XB, et al. In situ generation of H2O2 using MWCNT-Al/O2 system and possible application for glyphosate degradation. Sci Total Environ. 2019;650:2567–2576. doi:10.1016/j.scitotenv.2018.09.353.
  • Jiang K, Back S, Akey AJ, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun. 2019;10:3997. doi:10.1038/s41467-019-11992-2.
  • Mei D, Zhengda H, Zheng Y, et al. Mechanistic and kinetic implications on the ORR on a Au(100) electrode: PH, temperature and H-D kinetic isotope effects. Phys Chem Chem Phys. 2014;16. doi:10.1039/c4cp00257a.
  • Yizhong L, Chen W. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction. J Power Sources. 2012;197:107–110. doi:10.1016/j.jpowsour.2011.09.033.
  • Adzic R, Tripković AV, Vesšović VB. Structural effects in electrocatalysis: oxidation of formic acid and hydrogen adsorption on platinum single-crystal stepped surfaces. J Electroanal Chem Interfacial Electrochem. 1986;204:329–341. doi:10.1016/0022-0728(86)80530-7.
  • Miao J, Zhu H, Tang Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem Eng J. 2014;250:312–318. doi:10.1016/j.cej.2014.03.043.
  • Liu T, Wang K, Song S, et al. New electro-Fenton gas diffusion cathode based on nitrogen-doped Graphene@Carbon nanotube composite materials. Electrochim Acta. 2016;194:228–238. doi:10.1016/j.electacta.2015.12.185.
  • Iglesias D, Giuliani A, Melchionna M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem. 2018;4:106–123. doi:10.1016/j.chempr.2017.10.013.
  • Zhou W, Xie L, Gao J, et al. Selective H2O2 Electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: a critical review. Chem Eng J. 2020. doi:10.1016/j.cej.2020.128368.
  • Gao Y, Zhu W, Wang C, et al. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process. Electrochim Acta. 2020;330:135206. doi:10.1016/j.electacta.2019.135206.
  • Tian Q, Xiao F, Zhao H, et al. Simultaneously accelerating the regeneration of FeII and the selectivity of 2e- oxygen reduction over sulfide iron-based carbon aerogel in electro-Fenton system. Appl Catal, B. 2020;272:119039, doi:10.1016/j.apcatb.2020.119039.
  • Chu L, Sun Z, Cang L, et al. A novel sulfite coupling electro-fenton reactions with ferrous sulfide cathode for anthracene degradation. Chem Eng J. 2020;400:125945. doi:10.1016/j.cej.2020.125945.
  • Gao Y, Zhu W, Li Y, et al. Anthraquinone (AQS)/polyaniline (PANI) modified carbon felt (CF) cathode for selective H2O2 generation and efficient pollutant removal in electro-Fenton. J Environ Manag. 2022;304:114315), doi:10.1016/j.jenvman.2021.114315.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi:10.1038/354056a0.
  • Garg A, Chalak HD, Belarbi MO, et al. Estimation of carbon nanotubes and their applications as reinforcing composite materials – an engineering review. Compos Struct. 2021;272:114234. doi:10.1016/j.compstruct.2021.114234.
  • Khan FSA, Mubarak NM, Tan YH, et al. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J Hazard Mater. 2021;413:125375. doi:10.1016/j.jhazmat.2021.125375.
  • Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal. 2018;1:156–162. doi:10.1038/s41929-017-0017-x.
  • Zhu R, Zhu Y, Xian H, et al. CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: the important role of CNTs in accelerating Fe(III)/Fe(II) cycling. Appl Catal, B. 2020;270:118891. doi:10.1016/j.apcatb.2020.118891.
  • Zhao S, Zhao X. Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl Catal, B. 2019;250:408–418. doi:10.1016/j.apcatb.2019.02.031.
  • Cheng S, Shen C, Zheng H, et al. OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction. Appl Catal, B. 2020;269:118785. doi:10.1016/j.apcatb.2020.118785.
  • Gao Y, Zhu W, Wang C, et al. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process. Electrochim Acta. 2020;330; doi:10.1016/j.electacta.2019.135206.
  • Huang H, Han C, Wang G, et al. Lignin combined with polypyrrole as a renewable cathode material for H2O2 generation and its application in the electro-Fenton process for azo dye removal. Electrochim Acta. 2018;259:637–646. doi:10.1016/j.electacta.2017.11.014.
  • Jung E, Shin H, Antink WH, et al. Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design. ACS Energy Lett. 2020;5:1881–1892. doi:10.1021/acsenergylett.0c00812.
  • Liao X, Wang F, Wang F, et al. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal. Appl Catal, B. 2019;259:118064. doi:10.1016/j.apcatb.2019.118064.
  • Xie F, Gao Y, Zhang J, et al. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: characteristics and mechanism. Electrochim Acta. 2022;430:141099. doi:10.1016/j.electacta.2022.141099.
  • Zhang GZ J, Ji Q, Lan H, et al. Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation. Appl Catal, B. 2020;266:118665. doi:10.1016/j.apcatb.2020.118665.
  • Zhao H, Qian L, Chen Y, et al. Selective catalytic two-electron O2 reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process. Chem Eng J. 2018;332:486–498. doi:10.1016/j.cej.2017.09.093.
  • Ordonez ID, Cadenas E. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase. Biochem J. 1992;286(Pt 2):481–490. doi:10.1042/bj2860481.
  • Samuni A, Krishna CM, Riesz P, et al. Superoxide reaction with nitroxide spin-adducts. Free Radical Biol Med. 1989;6:141–148. doi:10.1016/0891-5849(89)90111-1.
  • Ai J, Zhang W, Liao G, et al. A novel waste activated sludge multistage utilization strategy for preparing carbon-based Fenton-like catalysts: catalytic performance assessment and micro-interfacial mechanisms. Water Res. 2019;150:473–487. doi:10.1016/j.watres.2018.11.085.
  • Hadjur C, Wagnières G, Ihringer F, et al. Production of the free radicals O.-2 and .OH by irradiation of the photosensitizer zinc(II) phthalocyanine. J Photochem Photobiol, B. 1997;38:196–202. doi:10.1016/S1011-1344(96)07440-4.
  • Xie F, Gao Y, Zhang J, et al. A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: characteristics and mechanism. Electrochim Acta. 2022: 141099. doi:10.1016/j.electacta.2022.141099.
  • Yang W, Zhou M, Cai J, et al. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene. J Mater Chem A. 2017;5:8070–8080. doi:10.1039/c7ta01534h.
  • Wang Y, Li S, Hou C, et al. Biomass-based carbon fiber/MOFs composite electrode for electro-Fenton degradation of TBBPA. Sep Purif Technol. 2022;282:120059. doi:10.1016/j.seppur.2021.120059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.