136
Views
0
CrossRef citations to date
0
Altmetric
Articles

Heterogeneous electro-Fenton treatment of coking wastewater using Fe/AC/Ni cathode: optimization of electrode and reactor organic loading

ORCID Icon, , , , , , & show all
Pages 2180-2195 | Received 28 Jun 2022, Accepted 31 Dec 2022, Published online: 30 Jan 2023

References

  • Chu L, Wang J, Dong J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide. Chemosphere. 2012;86:409–414. doi:10.1016/j.chemosphere.2011.09.007.
  • Song X, Wang C, Liu M, et al. Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst. Water Sci Technol. 2018;77:1891–1898. doi:10.2166/wst.2018.069.
  • Xu W, Zhao H, Cao H, et al. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: role of zero-valent iron in metagenomic functions. Bioresour Technol. 2020;300:122667. doi:10.1016/j.biortech.2019.122667.
  • Bu Q, Li Q, Cao Y, et al. A new method for identifying persistent, bioaccumulative, and toxic organic pollutants in coking wastewater. Process Saf Environ Prot. 2020;144:158–165. doi:10.1016/j.psep.2020.07.022.
  • Qin Z, Wei C, Wei T, et al. Evolution of biochemical processes in coking wastewater treatment: a combined evaluation of material and energy efficiencies and secondary pollution. Sci Total Environ. 2022;807:151072–151027. doi:10.1016/j.scitotenv.2021.151072.
  • Kim YM, Park D, Lee DS, et al. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. J Hazard Mater. 2008;152:915–921. doi:10.1016/j.jhazmat.2007.07.065.
  • Darwich A, Rivallin M, El M, et al. Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates. Water Res. 2019;162:446–455. doi:10.1016/j.watres.2019.07.005.
  • Shoorangiz M, Nikoo MR, Salari M, et al. Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin. Process Saf Environ Prot. 2019;132:340–350. doi:10.1016/j.psep.2019.10.011.
  • Rahmani AR, Shabanloo A, Fazlzadeh M, et al. Investigation of operational parameters influencing in treatment of dye from water by electro-Fenton process. Desalin Water Treat. 2016;57:24387–24394. doi:10.1080/19443994.2016.1146918.
  • Han M, Duan X, Cao G, et al. Graphitic nitride-catalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: a mini review. Process Saf Environ Prot. 2020;139:230–240. doi:10.1016/j.psep.2020.04.046.
  • Boucher V, Beaudon M, Ramirez P, et al. Comprehensive evaluation of non-catalytic wet air oxidation as a pretreatment to remove pharmaceuticals from hospital effluents. Environ Sci: Water Res Technol. 2021;7:1301–1314. doi:10.1039/D1EW00203A.
  • Zhou X, Hou Z, Lv L, et al. Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: parameters optimization, removal behavior and kinetics analysis. Chemosphere. 2020;238:124649. doi:10.1016/j.chemosphere.2019.124649.
  • Ding R, Zhang D, Gao Y, et al. Characteristics of refractory organics in industrial wastewater treated using a Fenton-coagulation process. Environ Technol. 2021;42:3432–3440. doi:10.1080/09593330.2020.1732476.
  • Mansour D, Fourcade F, Soutrel I, et al. Mineralization of synthetic and industrial pharmaceutical effluent containing trimethoprim by combining electro-Fenton and activated sludge treatment. J Taiwan Inst Chem Eng. 2015;53:58–67. doi:10.1016/j.jtice.2015.02.022.
  • García-Montoya MF, Gutiérrez-Granados S, Alatorre-Ordaz A, et al. Application of electrochemical/BDD process for the treatment wastewater effluents containing pharmaceutical compounds. J Ind Eng Chem. 2015;31:238–243. doi:10.1016/j.jiec.2015.06.030.
  • Hou B, Han H, Jia S, et al. Three-dimensional heterogeneous electro-fenton oxidation of biologically pretreated coal gasification wastewater using sludge derived carbon as catalytic particle electrodes and catalyst. J Taiwan Inst Chem Eng. 2016;60:352–360. doi:10.1016/j.jtice.2015.10.032.
  • Liu Y, Xie J, Ong CN, et al. Electrochemical wastewater treatment with carbon nanotube filters coupled with: In situ generated H2O2. Environ Sci: Water Res Technol. 2015;1:769–778. doi:10.1039/C5EW00128E.
  • Ou B, Wang J, Wu Y, et al. Reuse of PANI wastewater treated by anodic oxidation/electro-fenton for the preparation of PANI. Chemosphere. 2020;245:125689. doi:10.1016/j.chemosphere.2019.125689.
  • Ye Z, Zhang H, Zhang X, et al. Treatment of landfill leachate using electrochemically assisted UV/chlorine process: effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis. Chem Eng J. 2016;286:508–516. doi:10.1016/j.cej.2015.10.017.
  • Puga A, Rosales E, Pazos M, et al. Prompt removal of antibiotic by adsorption/electro-Fenton degradation using an iron-doped perlite as heterogeneous catalyst. Process Saf Environ Prot. 2020;144:100–110. doi:10.1016/j.psep.2020.07.021.
  • Baiju A, Gandhimathi R, Ramesh ST, et al. Combined heterogeneous electro-Fenton and biological process for the treatment of stabilized landfill leachate. J Environ Manage. 2018;210:328–337. doi:10.1016/j.jenvman.2018.01.019.
  • Kubo D, Kawase Y. Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode. J Clean Prod. 2018;203:685–695. doi:10.1016/j.jclepro.2018.08.231.
  • Meng G, Jiang N, Wang Y, et al. Treatment of coking wastewater in a heterogeneous electro-Fenton system: optimization of treatment parameters, characterization, and removal mechanism. J Water Process Eng. 2022;45:102482. doi:10.1016/j.jwpe.2021.102482.
  • Wang Y, Zhou X, Jiang N, et al. Treatment of biotreated coking wastewater by a heterogeneous electro-Fenton process using a novel Fe/activated carbon/Ni composite cathode. Int J Electrochem Sci. 2020;15:4567–4585. doi:10.20964/2020.05.70.
  • Kočanová V, Dušek L. Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation. Monatshefte für Chemie - Chemical Monthly. 2016;147:935–941. doi:10.1007/s00706-016-1688-8.
  • Wang N, Zheng T, Zhang G, et al. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering. 2016;4:762–787. doi:10.1016/j.jece.2015.12.016.
  • APHA. Stardard methods for the examination of water and wastewater. Am J Public Health. 2017. doi:10.2105/SMWW.2882.004
  • Meng G, Wang Y, Li X, et al. Treatment of landfill leachate evaporation concentrate by a modified electro-Fenton method. Environ Technol. 2022;43:500–513. doi:10.1080/09593330.2020.1795931.
  • Ricordel C, Djelal H. Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: system performances and sludge settling characteristics. Journal of Environmental Chemical Engineering. 2014;2:1551–1557. doi:10.1016/j.jece.2014.06.014.
  • Ghalebizade M, Ayati B. Solar photoelectrocatalytic degradation of acid orange 7 with ZnO/TiO2 nanocomposite coated on stainless steel electrode. Process Saf Environ Prot. 2016;103:192–202. doi:10.1016/j.psep.2016.07.009.
  • Goren AY, Okten HE. Energy production from treatment of industrial wastewater and boron removal in aqueous solutions using microbial desalination cell. Chemosphere. 2021;285:131370. doi:10.1016/j.chemosphere.2021.131370.
  • Syahidda N, Moksin A, Por Y, et al. Optimization of photocatalytic fuel cells (PFCs) in the treatment of diluted palm oil mill effluent (POME). J Water Process Eng. 2021;40:101880. doi:10.1016/j.jwpe.2020.101880.
  • Wang W, Wang L, Wang K, et al. Dissolved organic matter (DOM) removal from coking wastewater with efficient vanadium-titanium magnetite particle electrodes by 3D/EC/KPS system: optimization, performance, and mechanism. J Clean Prod. 2021;322:128683. doi:10.1016/j.jclepro.2021.128683.
  • Babuponnusami A, Muthukumar K. Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chem Eng J. 2012;183:1–9. doi:10.1016/j.cej.2011.12.010.
  • Lv W, Huangfu Z, Wang K, et al. Efficient degradation of indigo wastewater by one-step electrochemical oxidation and electro-flocculation. Pigm Resin Technol. 2020;50:32–40. doi:10.1108/PRT-12-2019-0112.
  • Liu X, Hu S, Sun R, et al. Dissolved oxygen disturbs nitrate transformation by modifying microbial community, co-occurrence networks, and functional genes during aerobic-anoxic transition. Sci Total Environ. 2021;790:148245. doi:10.1016/j.scitotenv.2021.148245.
  • Pour A H, Ardebili SM S, Sheikhdavoodi MJ. Multi-objective optimization of diesel engine performance and emissions fueled with diesel-biodiesel-fusel oil blends using response surface method. Environ Sci Pollut Res. 2018;25:35429–35439. doi:10.1007/s11356-018-3459-z.
  • Wang H, He L, Chen X, et al. Influence of process parameters on electrochemical removal of indole: response surface methodology, mechanism and energy consumption. Int J Electrochem Sci. 2021;16:21039. doi:10.20964/2021.03.54.
  • Muniz GL, Silva Td, Borges AC. Assessment and optimization of the use of a novel natural coagulant (Guazuma ulmifolia) for dairy wastewater treatment. Sci Total Environ. 2020;744:140864. doi:10.1016/j.scitotenv.2020.140864.
  • Delgado J, Longhurst P, Hickman GAW, et al. Intervention strategies for carcass disposal: pareto analysis of exposures for exotic disease outbreaks. Environ Sci Technol. 2010;44:4416–4425. doi:10.1021/es100039n.
  • Zheng W, Zhu L, Liang S, et al. Discovering the importance of ClO• in a coupled electrochemical system for the simultaneous removal of carbon and nitrogen from secondary coking wastewater effluent. Environ. Sci. Technol. 2020;54:9015–9024. doi:10.1021/acs.est.9b07704.
  • Das PP, Anweshan A, Mondal P, et al. Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere. 2021;263:128370. doi:10.1016/j.chemosphere.2020.128370.
  • Meng G, Liu B, Sun M, et al. Sludge-based activated carbon catalyzed H2O2 oxidation of reactive azo dyes. Environ Technol. 2021;42:682–693. doi:10.1080/09593330.2019.1643409.
  • Azimi SC, Shirini F, Pendashteh A. Treatment of wood industry wastewater by combined coagulation–flocculation–decantation and Fenton process. Water Environ Res. 2021;93:433–444. doi:10.1002/wer.1441.
  • Wang W, Wang K, Hao W, et al. Preparation of Ti-based Yb-doped SnO2-RuO2 electrode and electrochemical oxidation treatment of coking wastewater. J Rare Earths. 2022;40:763-771; doi:10.1016/j.jre.2021.04.001.
  • Zhou X, Hou Z, Song J, et al. Spectrum evolution of dissolved aromatic organic matters (DAOMs) during electro-peroxi-coagulation pretreatment of coking wastewater. Sep Purif Technol. 2020;235:116125. doi:10.1016/j.seppur.2019.116125.
  • Zhang T, Liu Y, Yang L, et al. Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system. J Clean Prod. 2020;258:120273. doi:10.1016/j.jclepro.2020.120273.
  • Zhang A, Gu Z, Chen W, et al. Removal of refractory organic pollutants in reverse-osmosis concentrated leachate by microwave-Fenton process. Environ Sci Pollut Res. 2018;25:28907–28916. doi:10.1007/s11356-018-2900-7.
  • Huang Z, Gu Z, Wang Y, et al. Improved oxidation of refractory organics in concentrated leachate by a Fe2+-enhanced O3/H2O2 process. Environ Sci Pollut Res. 2019;26:35797–35806. doi:10.1007/s11356-019-06592-y.
  • Sun J, Liu L, Yang F. Successful bio-electrochemical treatment of nitrogenous mariculture wastewater by enhancing nitrogen removal via synergy of algae and cathodic photo-electro-catalysis. Sci Total Environ. 2020: 140738. doi:10.1016/j.scitotenv.2020.140738.
  • Liu X, Yu X, Sha L, et al. The preparation of black titanium oxide nanoarray via coking fluorinated wastewater and application on coking wastewater treatment. Chemosphere. 2021;270:128609. doi:10.1016/j.chemosphere.2020.128609.
  • Wei C, Wu H, Kong Q, et al. Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization. J Environ Manage. 2019;246:324–333. doi:10.1016/j.jenvman.2019.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.