269
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enhanced degradation of phthalate esters (PAEs) by biochar-sodium alginate immobilised Rhodococcus sp. KLW-1

, ORCID Icon, , , ORCID Icon, & show all
Pages 3367-3380 | Received 24 Feb 2023, Accepted 28 Apr 2023, Published online: 24 May 2023

References

  • Das MT, Smita S, Kumar SS, et al. Remediation strategies for mitigation of phthalate pollution: Challenges and future perspectives. J Hazard Mater. 2021;409:124496), doi:10.1016/j.jhazmat.2020.124496.
  • Wang Y, Zhu HK, Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7(2):21), doi:10.3390/toxics7020021.
  • Lee ST, Lin C, Vu CT, et al. How human activities in commercial areas contribute to phthalate ester pollution in street dust of Taiwan. Sci Total Environ. 2019;647:619–626. doi:10.1016/j.scitotenv.2018.07.362.
  • Wu MT, Wu CF, Wu JR, et al. The public health threat of phthalate-tainted foodstuffs in Taiwan: The policies the government implemented and the lessons we learned. Environ Int. 2012;44:75–79. doi:10.1016/j.envint.2012.01.014.
  • Danyal Y, Mahmood K, Ullah S, et al. Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. Environ Sci Pollut Res. 2023;30:5296–5311. doi:10.1007/s11356-022-23967-w.
  • Razia S, Hadibarata T, Lau SY. Acidophilic microorganisms in remediation of contaminants present in extremely acidic conditions. Bioprocess Biosyst Eng. 2023;46(3):341–358. doi:10.1007/s00449-022-02844-3.
  • Li JL, Zhang JF, Yadav MP, et al. Biodegradability and biodegradation pathway of di-(2-ethylhexyl) phthalate by Burkholderia pyrrocinia B1213. Chemosphere. 2019;225:443–450. doi:10.1016/j.chemosphere.2019.02.194.
  • Quintella CM, Mata AMT, Lima LCP. Overview of bioremediation with technol-ogy assessment and emphasis on fungal bioremediation of oil contaminated soils. J Environ Manag. 2019;241:156–166. doi:10.1016/j.jenvman.2019.04.019.
  • Feng NX, Feng YX, Liang QF, et al. Complete biodegradation of di-n-butyl phthalate (DBP) by a novel Pseudomonas sp. YJB6. Sci Total Environ. 2021;761:143208), doi:10.1016/j.scitotenv.2020.143208.
  • Sun RX, Wang L, Jiao YQ, et al. Metabolic process of di-n-butyl phthalate (DBP) by Enterobacter sp.DNB-S2, isolated from Mollisol region in China. Environ Pollut. 2019;255(2):113344), doi:10.1016/j.envpol.2019.113344.
  • Su XM, Xie MQ, Han Z, et al. Resuscitation-Promoting factor accelerates enrichment of highly active tetrachloroethene/polychlorinated biphenyl-dechlorinating cultures. Appl Environ Microbiol. 2023;89(1):e0195122), doi:10.1128/aem.01951-22.
  • Sun T, Miao JB, Saleem M, et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J Hazard Mater. 2020;398:122941), doi:10.1016/j.jhazmat.2020.122941.
  • Tian Y, Xia XM, Wang J, et al. Chronic toxicological effects of carbamazepine on daphnia magna straus: effects on reproduction traits, body length, and intrinsic growth. Bull Environ Contam Toxico. 2019;103(5):723–728. doi:10.1007/s00128-019-02715-w.
  • Li NN, Xu HC, Yang YP, et al. Preparation, optimization and reusability of immobilized petroleum degrading bacteria. Environ Technol. 2021;42(16):2478–2488. doi:10.1080/09593330.2019.1703826.
  • Yu TM, Wang L, Ma F, et al. A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. J Hazard Mater. 2020;384:121326), doi:10.1016/j.jhazmat.2019.121326.
  • Wang CH, Gu LF, Ge SM, et al. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr (VI) co-contaminated soil. Environ Technol. 2019;40(18):2345–2353. doi:10.1080/09593330.2018.1441328.
  • Zhang TR, Li T, Zhou ZJ, et al. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. Sci Total Environ. 2023;877:162812), doi:10.1016/j.scitotenv.2023.162812.
  • Bera S, Mohantya K. Arec nut (Areca catechu) husks and Luffa (Luffa cylindrica) sponge as microbial immobilization matrices for efficient phenol degradation. J Water Process Eng. 2020;33:100999), doi:10.1016/j.jwpe.2019.100999.
  • Qiao KL, TianWJ W, BaiJ J, et al. Removal of high-molecular-weight polycyclic aromatic hydrocarbons by a microbial consortium immobilized in magnetic floating biochar gel beads. Mar Pollut Bull. 2020;159:111489), doi:10.1016/j.marpolbul.2020.111489.
  • Cai JF, Liu JL, Pan AD, et al. Effective decolorization of anthraquinone dye reactive blue 19 using immobilized Bacillus sp. JF4 isolated by resuscitation-promoting factor strategy. Water Sci Technol. 2020;81(6):1159–1169. doi:10.2166/wst.2020.201.
  • Zhao HM, Du H, Lin J, et al. Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Sci Total Environ. 2016;562:170–178. doi:10.1016/j.scitotenv.2016.03.171.
  • Wang Q, Wu XG, Jiang LH, et al. Effective degradation of Di-n-butyl phthalate by reusable, magnetic Fe3O4 nanoparticle-immobilized Pseudomonas sp. W1 and its application in simulation. Chemosphere. 2020;250:126339), doi:10.1016/j.chemosphere.2020.126339.
  • Liu SQ, Chen HY, Zhang XQ, et al. Degradation of tetracycline wastewater by suspended biochar as carriers in moving bed biofilm reactor. Water Sci Technol. 2022;86(6):1578–1589. doi:10.2166/wst.2022.285.
  • Yu TF, Liu XD, Ai JM, et al. Microbial community succession during crude oil-degrading bacterial enrichment cultivation and construction of a degrading consortium. Front Microbiol. 2022;13:1044448), doi:10.3389/fmicb.2022.1044448.
  • Wang P, Zhang YM, Wang JJ, et al. A high-efficiency phenanthrene-degrading Diaphorobacter sp. isolated from PAH-contaminated river sediment. Sci Total Environ. 2020;746(1):140455), doi:10.1016/j.scitotenv.2020.140455.
  • Deng ZX, Jiang YY, Chen KK, et al. One biosurfactant-producing bacteria Achromobacter sp. A-8 and its potential use in microbial enhanced oil recovery and bioremediation. Front Microbiol. 2020;11:247), doi:10.3389/fmicb.2020.00247.
  • Pereyra-Camacho MA, Balderas-Hernández VE, AD L-R. Biodegradation of diisononyl phthalate by a consortium of saline soil bacteria: optimisation and kinetic characterization. Appl Microbiol Biotechnol. 2021;105(8):3369–3380. doi:10.1007/s00253-021-11255-5.
  • Yang J, Guo CL, Liu SS, et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ Sci Pollut Res. 2018;25(18):17645–17653. doi:10.1007/s11356-018-1862-0.
  • Sharma K, Kaur M, Rattan G, et al. Effective biocatalyst developed via genipin mediated acetylcholinesterase immobilization on rice straw derived cellulose nanofibers for detection and bioremediation of organophosphorus pesticide. Colloids Surf A: Physicochem Eng Aspects. 2022;640:128484), doi:10.1016/j.colsurfa.2022.128484.
  • Qi X, Gou JL, Chen XM, et al. Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. J Hazard Mater. 2021;401:123823), doi:10.1016/j.jhazmat.2020.123823.
  • Zhang K, Liu YH, Luo HB, Chen Q, Zhu ZY, Chen W, Chen J, Ji L, Mo Y, 2017. Bacterial community dynamics and enhanced degradation of di-n-octyl phthalate (DOP) by corncob-sodium alginate immobilized bacteria. Geoderma. 305: 264-274. doi:10.1016/j.geoderma.2017.06.009.
  • Shahriarinour M, Divsar F, Dahka FK, et al. Biodegradation of alprazolam in pharmaceutical wastewater using mesoporous nanoparticles-adhered pseudomonas stutzeri. Molecules. 2022;27(1):237), doi:10.3390/molecules27010237.
  • Chen Z, Zheng Z, Wang FL, et al. Intracellular metabolic changes of Rhodococcus sp LH during the biodegradation of diesel oil. Mar Biotechnol. 2018;20(6):803–812. doi:10.1007/s10126-018-9850-4.
  • Zampolli J, Orro A, Vezzini D, et al. Genome-Based exploration of rhodococcus species for plastic-degrading genetic determinants using bioinformatic analysis. Microorganisms. 2022;10(9):1846), doi:10.3390/microorganisms10091846.
  • Tian KJ, Yu Y, Qiu Q, et al. Mechanisms of BPA degradation and toxicity resistance in Rhodococcus equi. Microorganisms. 2022;11(1):67), doi:10.3390/microorganisms11010067.
  • Liu J, Zhang AN, Liu YJ, et al. Analysis of the mechanism for enhanced pyrene biodegradation based on the interactions between iron-ions and Rhodococcus ruber strain L9. Ecotoxicol Environ Saf. 2021;225:112789), doi:10.1016/j.ecoenv.2021.112789.
  • Yu CG, Wang H, Blaustein RA, et al. Pangenomic and functional investigations for dormancy and biodegradation features of an organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9. Sci Total Environ. 2022;809:151141), doi:10.1016/j.scitotenv.2021.151141.
  • Gorbunova TI, Egorova DO, Pervova MG, et al. Biodegradation of trichlorobiphenyls and their hydroxylated derivatives by Rhodococcus-strains. J Hazard Mater. 2021;409:124471), doi:10.1016/j.jhazmat.2020.124471.
  • Liu JY, Zhou XL, Wang T, et al. Construction and comparison of synthetic microbial consortium system (SMCs) by non-living or living materials immobilization and application in acetochlor degradation. J Hazard Mater. 2022;438:129460), doi:10.1016/j.jhazmat.2022.129460.
  • Maniyam MN, Lbrahim AL, Cass AEG. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environ Technol. 2020;41(1):71–85. doi:10.1080/09593330.2018.1491634.
  • Singh P, Ansu Kumari A, Chauhan K, Attri C, Seth A, 2020. Nitrile hydratase mediated green synthesis of lactamide by immobilizing Rhodococcus pyridinivorans NIT-36 cells on N, N′-Methylene bis-acrylamide activated chitosan. Int J Biol Macromol. 161: 168-176. doi:10.1016/j.ijbiomac.2020.06.004.
  • Sharma NH, Kumar V, Maitra SS, et al. DBP biodegradation kinetics by Acinetobacter sp. 33F in pristine agricultural soil. Environ Technol Innov. 2021;21:101240), doi:10.1016/j.eti.2020.101240.
  • Zhang KY, Teng ZD, Shao W, et al. Effective passivation of lead by phosphate solubilizing bacteria capsules containing tricalcium phosphate. J Hazard Mater. 2020;397:122754), doi:10.1016/j.jhazmat.2020.122754.
  • Lu L, Li AA, Ji XQ, et al. Surfactant-facilitated alginate-biochar beads embedded with PAH-degrading bacteria and their application in wastewater treatment. Environ Sci Pollut Res. 2020;28(4):4807–4814. doi:10.1007/s11356-020-10830-z.
  • Xiao KM, Li YZ, Sun Y, et al. Remediation performance and mechanism of heavy metals by a bottom-up activation and extraction system using multiple biochemical materials. ACS Appl Mater Interfaces. 2017;9(36):30448–30457. doi:10.1021/acsami.7b09520.
  • Ai F, Zhang Y, Fan XN, et al. Clean style recovery and utilization of residual nutrients in effluents from biohydrogen production: in situ immobilization based on sodium alginate. Front Bioeng Biotechnol. 2022;10:906968), doi:10.3389/fbioe.2022.906968.
  • Lin QH, Ding JY, Yang YY, et al. Simultaneous adsorption and biodegradation of polychlorinated biphenyls using resuscitated strain Streptococcus sp. SPC0 immobilized in polyvinyl alcohol-sodium alginate. Sci Total Environ. 2023;868:161620), doi:10.1016/j.scitotenv.2023.161620.
  • Ouyang XF, Yin H, Yu XL, Guo ZY, Zhu MH, Lu GN, Dang Z, 2021. Enhanced bioremediation of 2,3′,4,4′,5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar. Sci Total Environ. 788: 147774. doi:10.1016/j.scitotenv.2021.147774.
  • Ma LL, Hu T, Liu YC, et al. Combination of biochar and immobilized bacteria accelerates polyacrylamide biodegradation in soil by both bio-augmentation and bio-stimulation strategies. J Hazard Mater. 2020;405:124086), doi:10.1016/j.jhazmat.2020.124086.
  • Xue JL, Wu YN, Shi K, et al. Study on the degradation performance and kinetics of immobilized cells in straw-alginate beads in marine environment. Bioresour Technol. 2019;280:88–94. doi:10.1016/j.biortech.2019.02.019.
  • Chen CH, Whang LM, Pan CL, et al. Immobilization of diesel-degrading consortia for bioremediation of diesel-contaminated groundwater and seawater. Int Biodeter Biodegr. 2017;124:62–72. doi:10.1016/j.ibiod.2017.07.001.
  • Farag AM, El-Naggar MY, Ghanem KM. 2,4-Dichlorophenol biotransformation using immobilized marine halophilic Bacillus subtilis culture and laccase enzyme: application in wastewater treatment. J Genet Eng Biotechnol. 2022;20:134), doi:10.1186/s43141-022-00417-1.
  • Liang J, Gong SX, Sun YH, et al. Enhanced degradation of phenol by a novel biomaterial through the immobilization of bacteria on cationic straw. Water Sci Technol. 2021;84(12):3791–3798. doi:10.2166/wst.2021.498.
  • Zhang W, Shen JN, Zhang HF, Zheng CQ, Wei RP, Gao Y, Yang LY, 2021. Efficient nitrate removal by Pseudomonas mendocina GL6 immobilized on biochar. Bioresour Technol. 320 (Pt A): 124324. doi:10.1016/j.biortech.2020.124324.
  • Wahla AQ, Anwar S, Mueller JA, et al. Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. J Hazard Mater. 2020;390:121493), doi:10.1016/j.jhazmat.2019.121493.
  • Mehrotra T, Zaman MN, Prasad BB, et al. Rapid im-mobilization of viable Bacillus pseudomycoides in polyvinyl alcohol/glutaraldehyde hydrogel for biological treatment of municipal wastewater. Environ Sci Pollut Res. 2020;27:9167–9180. doi:10.1007/s11356-019-07296-z.
  • Dong XJ, Li Y, Zhu R, et al. Biotreatment of Cr(VI) and pyrene combined water pollution by loofa-immobilized bacteria. Environ Sci Pollut Res. 2021;28(33):45619–45628. doi:10.1007/s11356-021-13893-8.
  • Ma XY, Zhou XJ, Wei SJ, et al. Synchronous degradation of phenol and aniline by Rhodococcus sp. strain PB-1 entrapped in sodium alginate-bamboo charcoal-chitosan beads. Environ Technol. 2021;42(28):4405–4414. doi:10.1080/09593330.2020.1760357.
  • Yu C, Zhang Y, Fang Y, et al. Shewanella oneidensis MR-1 impregnated Ca-alginate capsule for efficient Cr (VI) reduction and Cr (III) adsorption. Environ Sci Pollut Res. 2020;27(14):16745–16753. doi:10.1007/s11356-019-06832-1.
  • Xiang XZ, Yi XH, Zheng WB, et al. Enhanced biodegradation of thiamethoxam with a novel polyvinyl alcohol (PVA)/sodium alginate (SA)/biochar immobilized Chryseobacterium sp H5. J Hazard Mater. 2023;443:130247), doi:10.1016/j.jhazmat.2022.130247.
  • Wu SC, Hao P, Lv ZS, et al. Construction of magnetic composite bacterial carrier and application in 17β-estradiol degradation. Molecules. 2022;27:5807), doi:10.3390/molecules27185807.
  • Wang P, Gao J, Zhao Y, et al. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX. Sci Total Environ. 2021;755(1):142476), doi:10.1016/j.scitotenv.2020.142476.
  • Benjamin S, Kamimura N, Takahashi K, et al. Achromobacter denitrificans SP1 efficiently utilizes 16 phthalate diesters and their downstream products through protocatechuate 3,4-cleavage pathway. Ecotoxicol Environ Saf. 2016;134:172–178. doi:10.1016/j.ecoenv.2016.08.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.