142
Views
1
CrossRef citations to date
0
Altmetric
Articles

Enhanced photocatalytic activity of magnetically recyclable spherical Fe3O4/Cu2O S-scheme heterojunction

, , , , , & show all
Pages 3986-4002 | Received 28 Apr 2023, Accepted 07 Jul 2023, Published online: 24 Jul 2023

References

  • Almasian A, Mahmoodi NM, Olya ME. Tectomer grafted nanofiber: synthesis, characterization and dye removal ability from multicomponent system. J Ind Eng Chem. 2015;32:85–98. doi: 10.1016/j.jiec.2015.08.002
  • Kishor R, Purchase D, Saratale GD, et al. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng. 2021;9(2):105012. doi: 10.1016/j.jece.2020.105012
  • Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. 2004;30(7):953–971. doi: 10.1016/j.envint.2004.02.001
  • Namasivayam C, Sumithra S. Removal of direct red 12B and methylene blue from water by adsorption onto Fe (III)/Cr (III) hydroxide, an industrial solid waste. J Environ Manag. 2005;74(3):207–215. doi: 10.1016/j.jenvman.2004.08.016
  • Wang K, Li B, Zhao C, et al. A novel NiO/BaTiO3 heterojunction for piezocatalytic water purification under ultrasonic vibration. Ultrason Sonochem. 2023;92:106285. doi: 10.1016/j.ultsonch.2022.106285
  • Zhao C, Cai L, Wang K, et al. Novel Bi2WO6/ZnSnO3 heterojunction for the ultrasonic-vibration-driven piezocatalytic degradation of RhB. Environ Pollut. 2023;319:120982. doi: 10.1016/j.envpol.2022.120982
  • Zheng S, Li X, Zhang J, et al. One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of rhodamine B under ultrasonic vibration. J Environ Sci. 2023;125:1–13. doi: 10.1016/j.jes.2021.10.028
  • Chen L, Zhang W, Wang J, et al. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation. Green Energy Environ. 2021.
  • Almasian A, Olya ME, Mahmoodi NM. Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal. Fibers Polym. 2015;16:1925–1934. doi: 10.1007/s12221-015-4624-3
  • Parale VG, Kim T, Lee KY, et al. Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ Epoxy-Ring opening polymerization and Sol-Gel process for enhanced degradation activity. Ceram Int. 2020;46(4):4939–4946. doi: 10.1016/j.ceramint.2019.10.231
  • Ghorai K, Panda A, Bhattacharjee M, et al. Facile synthesis of CuCr2O4/CeO2 nanocomposite: a new Fenton like catalyst with domestic LED light assisted improved photocatalytic activity for the degradation of RhB, MB and MO dyes. Appl Surf Sci. 2021;536:147604. doi: 10.1016/j.apsusc.2020.147604
  • Mashentseva AA, Barsbay M, Aimanova NA, et al. Application of silver-loaded composite track-etched membranes for photocatalytic decomposition of methylene blue under visible light. Membranes. 2021;11(1):60. doi: 10.3390/membranes11010060
  • Tuncer N, Sönmez G. Removal of COD and color from textile wastewater by the Fenton and UV/H2O2 oxidation processes and optimization. Water Air Soil Pollut. 2023;234(2):70. doi: 10.1007/s11270-023-06095-0
  • Ertugay N, Acar FN. Removal of COD and color from direct blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study. Arab J Chem. 2017;10:S1158–S1163. doi: 10.1016/j.arabjc.2013.02.009
  • Wu S, Jiang W, Zhang X, et al. A sonochemical route for the encapsulation of drug in magnetic microspheres. J Magn Magn Mater. 2012;324(2):124–127. doi: 10.1016/j.jmmm.2011.07.038
  • Yan Q, Fu Y, Zhang Y, et al. Ag/γ-AgI/Bi2O2CO3/Bi S-scheme heterojunction with enhanced photocatalyst performance. Sep Purif Technol. 2021;263:118389. doi: 10.1016/j.seppur.2021.118389
  • Liu C, He X, Xu Q, et al. A general way to realize the bi-directional promotion effects on the photocatalytic removal of heavy metals and organic pollutants in real water by a novel S-scheme heterojunction: experimental investigations, QSAR and DFT calculations. J Hazard Mater. 2023;445:130551. doi: 10.1016/j.jhazmat.2022.130551
  • Li ZP, Wen YQ, Shang JP, et al. Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity. Chin Chem Lett. 2014;25(2):287–291. doi: 10.1016/j.cclet.2013.10.023
  • Zhu DZ, Hu YA, Shen WL, et al. Preparation of porous Fe3O4@ Cu2O nanocompositesand their photocatalytic activity under visible irradiation. J Anhui Univ. 2013;5:73–79. doi: 10.3969/j.issn.1000-2162.2013.05.012
  • Wang Q, Yang Y, Ma S, et al. Preparation of Fe3O4@ Prussian blue core/shell composites for enhanced photo-Fenton degradation of rhodamine B. Colloids Surf A. 2020;606:125416. doi: 10.1016/j.colsurfa.2020.125416
  • Zhao C, Fu H, Yang X, et al. Adsorption and photocatalytic performance of Au nanoparticles decorated porous Cu2O nanospheres under simulated solar light irradiation. Appl Surf Sci. 2021;545:149014. doi: 10.1016/j.apsusc.2021.149014
  • Wang W, Li N, Chi Y, et al. Electrospinning of magnetical bismuth ferrite nanofibers with photocatalytic activity. Ceram Int. 2013;39(4):3511–3518. doi: 10.1016/j.ceramint.2012.10.175
  • Yin S, Chen R, Ji M, et al. Construction of ultrathin MoS2/Bi5O7I composites: effective charge separation and increased photocatalytic activity. J Colloid Interface Sci. 2020;560:475–484. doi: 10.1016/j.jcis.2019.10.081
  • Rehman GU, Tahir M, Goh PS, et al. Controlled synthesis of reduced graphene oxide supported magnetically separable Fe3O4@ rGO@ AgI ternary nanocomposite for enhanced photocatalytic degradation of phenol. Powder Technol. 2019;356:547–558. doi: 10.1016/j.powtec.2019.08.026
  • Zhu J, Qin L, Uliana A, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration. ACS Appl Mater Interfaces. 2017;9(2):1975–1986. doi: 10.1021/acsami.6b14412
  • Chen F, Huang GX, Yao FB, et al. Catalytic degradation of ciprofloxacin by a visible-light-assisted peroxymonosulfate activation system: performance and mechanism. Water Res. 2020;173:115559. doi: 10.1016/j.watres.2020.115559
  • Babuponnusami A, Muthukumar K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng. 2014;2(1):557–572. doi: 10.1016/j.jece.2013.10.011
  • Liu N, Sijak S, Zheng M, et al. Aquatic photolysis of florfenicol and thiamphenicol under direct UV irradiation, UV/H2O2 and UV/Fe (II) processes. Chem Eng J. 2015;260:826–834. doi: 10.1016/j.cej.2014.09.055
  • Yang C, Wang J, Mei L, et al. Enhanced photocatalytic degradation of rhodamine B by Cu2O coated silicon nanowire arrays in presence of H2O2. J Mater Sci Technol. 2014;30(11):1124–1129. doi: 10.1016/j.jmst.2014.03.023
  • Xu Q, Wageh S, Al-Ghamdi AA, et al. Design principle of S-scheme heterojunction photocatalyst. J Mater Sci Technol. 2022;124:171–173. doi: 10.1016/j.jmst.2022.02.016
  • Bai S, Yang X, Liu C, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng. 2018;6(10):12906–12913. doi: 10.1021/acssuschemeng.8b02267
  • Theerthagiri J, Senthil RA, Priya A, et al. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4nanocomposites. RSC Adv. 2014;4(72):38222–38229. doi: 10.1039/C4RA04266B
  • Sayed M, Yu J, Liu G, et al. Non-noble plasmonic metal-based photocatalysts. Chem Rev. 2022;122(11):10484–10537. doi: 10.1021/acs.chemrev.1c00473
  • Yang X, He J, Yang Q, et al. Cu (I)-doped Fe3O4 nanoparticles/porous C composite for enhanced H2O2 oxidation of carbamazepine. J Colloid Interface Sci. 2019;551:16–25. doi: 10.1016/j.jcis.2019.04.083
  • Xie R, Jiang Y, Armutlulu A, et al. One-step fabrication of oxygen vacancy-enriched Fe@ Ti/C composite for highly efficient degradation of organic pollutants through persulfate activation. J Colloid Interface Sci. 2021;583:394–403. doi: 10.1016/j.jcis.2020.09.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.