1,075
Views
0
CrossRef citations to date
0
Altmetric
Articles

Isolation of bacteria with plant growth-promoting properties from microalgae-bacterial flocs produced in high-rate oxidation ponds

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4003-4016 | Received 10 Nov 2022, Accepted 12 Jul 2023, Published online: 29 Jul 2023

References

  • Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science. 2022;375(6584):eabe0725. DOI:10.1126/science.abe0725
  • Sekhohola-Dlamini LM, Keshinro OM, Masudi WL, et al. Elaboration of a phytoremediation strategy for successful and sustainable rehabilitation of disturbed and degraded land. Minerals. 2022;12(2):111. DOI:10.3390/min12020111
  • Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63(1):541–556. DOI:10.1146/annurev.micro.62.081307.162918
  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqued M, et al. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–99. DOI:10.1016/j.micres.2015.11.008
  • Backer R, Rokem JS, Ilangumaran G, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. DOI:10.3389/fpls.2018.01473
  • Basu A, Prasad P, Das SN, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability. 2021;13:1140. DOI:10.3390/su13031140
  • de los Santos-Villalobosa S, Parra-Cota FI. Current trends in plant growth-promoting microorganisms research for sustainable food security. Curr Res Microbial Sci. 2022;2:100016. DOI:10.1016/j.crmicr.2020.100016
  • Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169:30–39. DOI:10.1016/j.micres.2013.09.009
  • Kang S-M, Shahzad R, Bilal S, et al. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019;19:80. DOI:10.1186/s12866-019-1450-6
  • Hallett PD, Marin M, Bending GD, et al. Building soil sustainability from root-soil interface traits. Trends Plant Sci. 2022;27(7):688–698. DOI:10.1016/j.tplants.2022.01.010
  • Titilawo Y, Jimoh TA, Cowan AK. Multiple drug-resistant Escherichia coli phylogroups from the Belmont Valley integrated algal pond system. Water Air Soil Pollut. 2021;232(12):485. DOI:10.1007/s11270-021-05440-5
  • Laubscher RK, Cowan AK. Elaboration of an algae-to-energy system and recovery of water and nutrients from municipal sewage. Eng Life Sci. 2020;20(7):230–315. DOI:10.1002/elsc.202000007
  • Craggs R, Park J, Heubeck S, et al. High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. N Z J Bot. 2014;52(1):60–73. DOI:10.1080/0028825X.2013.861855
  • Mambo PM, Westensee DK, Zuma BM, et al. The Belmont Valley integrated algae pond system in retrospect. Water SA. 2014;40(2):385–391. DOI:10.4314/wsa.v40i2.21
  • Ho L, Goethals PLM. Municipal wastewater treatment with pond technology: historical review and future outlook. Ecol Eng. 2020;148:105791. DOI:10.1016/j.ecoleng.2020.105791
  • Van Den Hende S, Claessens L, De Muylder E, et al. Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquacult Res. 2014;47(4):1075–1089. DOI:10.1111/are.12564
  • Wieczorek N, Kucuker MA, Kuchta K. Microalgae-bacteria flocs (MaB-flocs) as a substrate for fermentative biogas production. Bioresour Technol. 2015;194:130–136. DOI:10.1016/j.biortech.2015.06.104
  • Jimoh TA, Cowan AK. Extracellular polymeric substance production in high rate algal oxidation ponds. Water Sci Technol. 2017;76(10):2647–2654. DOI:10.2166/wst.2017.438
  • Jimoh TA, Keshinro MO, Cowan AK. Microalgal-bacterial flocs and extracellular polymeric substances: two essential and valuable products of integrated algal pond systems. Water Air Soil Pollut. 2019;230(4):95. DOI:10.1007/s11270-019-4148-3
  • Khoo KS, Chia WY, Chew KW, et al. Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production. Indian J Microbiol. 2021;61(3):262–269. DOI:10.1007/s12088-021-00924-8
  • Rawat I, Kumar R, Mutanda T, et al. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88(10):3411–3424. DOI:10.1016/j.apenergy.2010.11.025
  • Cowan AK. Bio-refineries: bioprocess technologies for wastewater treatment, energy and product valorization. AIP Conf Proc. 2010;1229:80–86. DOI:10.1063/1.3419705
  • Psycha M, Pyrgakis K, Harvey PJ, et al. Design analysis of integrated microalgae biorefineries. Comput Aided Chem Eng. 2014;34:591–596. DOI:10.1016/B978-0-444-63433-7.50083-3
  • Jimoh TA, Laubscher RK, Askew DJ, et al. Advanced oxidation as tertiary treatment for recovery of effluent from an integrated algal pond system. Water Environ J. 2021;35:1094–1102. DOI:10.1111/wej.12701
  • Mambo PM, Westensee DK, Render DS, et al. Operation of an integrated algae pond system for the treatment of municipal sewage: a South African case study. Water Sci Technol. 2014;69(12):2554–2561. DOI:10.2166/wst.2014.187
  • Ruangpan L, Tendencia EA. Laboratory manual of standardized methods for antimicrobial sensitivity tests for bacteria isolated from aquaculture. Iloilo: Southeast Asian Fisheries Development Center, Aquaculture Department; 2004.
  • Titilawo Y, Masudi WL, Olawale JT, et al. Coal-degrading bacteria display characteristics typical of plant growth-promoting rhizobacteria. Processes. 2020;8(9):1111. DOI:10.3390/pr8091111
  • Olawale JT, Edeki OG, Cowan AK. Bacterial degradation of coal discard and geologically weathered coal. Int J Coal Sci Technol. 2020;7(2):405–416. DOI:10.1007/s40789-020-00306-3
  • Gupta M, Kiran S, Gulati A, et al. Isolation and identification of phosphate solubilising bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller. Microbiol Res. 2012;167(6):358–363. DOI:10.1016/j.micres.2012.02.004
  • Mohite B. Isolation and characterisation of indole acetic acid (IAA) producing bacteria from rhizosphere soil and its effect on plant growth. J Soil Sci Plant Nutr. 2013;13(3):638–649. DOI:10.4067/S0718-95162013005000051
  • Zahid M, Abbasi MK, Hameed S, et al. Isolation and identification of indigenous plant growth-promoting rhizobacteria from the Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol. 2015;6(207):207. DOI:10.3389/fmicb.2015.00207
  • Coico R. Gram staining. Curr Protoc Microbiol. 2006;1:A.3C.1–A.3C.2. DOI:10.1002/9780471729259.mca03cs00
  • Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons; 1991. p. 115–175.
  • Turner S, Pryer KM, Miao VP, et al. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol. 1999;46(4):327–338. DOI:10.1111/j.1550-7408.1999.tb04612.x
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729. DOI:10.1093/molbev/mst197
  • Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;61:793–796. DOI:10.1128/aem.61.2.793-796.1995
  • Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26:192–195. DOI:10.1104/pp.26.1.192
  • Majeed A, Abbasi MK, Hameed S, et al. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Front Microbiol. 2015;6:198. DOI:10.3389/fmicb.2015.00198
  • Zhao Y, Shi R, Bian X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv Sci. 2019;2019:1802109. DOI:10.1002/advs.201802109
  • Zhou L, Boyd CE. Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture. 2016;450:187–193. DOI:10.1016/j.aquaculture.2015.07.022
  • Jeong H, Park J, Kim H. Determination of NH4+ in environmental water with interfering substances using the modified Nessler method. J Chem. 2013;2013:e359217, DOI:10.1155/2013/359217
  • Sharma SB, Sayyed RZ, Trivedi MH, et al. Phosphate solubilising microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2013;2(1):587. DOI:10.1186/2193-1801-2-587
  • Saha M, Maurya BR, Meena VS, et al. Identification and characterisation of potassium solubilising bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol. 2016;7:202–209. DOI:10.1016/j.bcab.2016.06.007
  • Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–270. DOI:10.1111/j.1574-6968.1999.tb13383.x
  • Lee J, Cho D-H, Ramanan R, et al. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol. 2013;131:195–201. DOI:10.1016/j.biortech.2012.11.130
  • Perera IA, Abinandan S, Subashchandrabose SR, et al. Extracellular polymeric substances drive symbiotic interactions in bacterial-microalgal consortia. Microb Ecol. 2022;83(3):596–607. DOI:10.1007/s00248-021-01772-1
  • Van Den Hende S, Vervaeren H, Desmet S, et al. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol. 2011;29(1):23–31. DOI:10.1016/j.nbt.2011.04.009
  • Tang C-C, Tian Y, Liang H, et al. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae assisted sequencing batch biofilm reactor. Bioresour Technol. 2018;250:185–190. DOI:10.1016/j.biortech.2017.11.028
  • Green FB, Bernstone L, Ludquist TJ, et al. Methane fermentation, submerged gas collection, and the fate of carbon in advanced integrated wastewater pond systems. Water Sci Technol. 1995;31(12):55–65. DOI:10.2166/wst.1995.0458
  • Natrah FMI, Bossier P, Sorgeloos P, et al. Significance of microalgal–bacterial interactions for aquaculture. Rev Aquacult. 2013;5:1–14. DOI:10.1111/raq.12024
  • Breakfield NW, Collett D, Frodyma ME. Plant growth-promoting microbes – an industry view. Emerg Top Life Sci. 2021;5(2):317–324. DOI:10.1042/ETLS20200313
  • Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. Plant J. 2021;105:518–541. DOI:10.1111/tpj.15135
  • Oleńska E, Małek W, Wójcik M, et al. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ. 2020;743:140682. DOI:10.1016/j.scitotenv.2020.140682
  • Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol. 1995;21(1):1–18. DOI:10.3109/10408419509113531
  • Frébortová J, Frébort I. Biochemical and structural aspects of cytokinin biosynthesis and degradation in bacteria. Microorganisms. 2021;9(6):1314. DOI:10.3390/microorganisms9061314
  • Glick BR, Nascimento FX. Pseudomonas 1-aminocyclopropane-1-carboxylate (ACC) deaminase and its role in beneficial plant-microbe interactions. Microorganisms. 2021;9(12):2467. DOI:10.3390/microorganisms9122467
  • Keswani C, Singh SP, Cueto L, et al. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol. 2020;104:8549–8565. DOI:10.1007/s00253-020-10890-8
  • Park S, Kim AL, Hong YK, et al. A highly efficient auxin-producing bacterial strain and its effect on plant growth. J Genet Eng Biotechnol. 2021;19:179), DOI:10.1186/s43141-021-00252-w
  • Nascimento FX, Urón P, Glick BR, et al. Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas thivervalensis SC5 reveals its multifaceted roles in soil and in beneficial interactions with plants. Front Microbiol. 2021;12:752288. DOI:10.3389/fmicb.2021.752288
  • Shi TQ, Peng H, Zeng SY, et al. Microbial production of plant hormones: opportunities and challenges. Bioengineered. 2017;8(2):124–128. DOI:10.1080/21655979.2016.1212138
  • Wu S, Ma X, Zhou A, et al. Establishment of strigolactone-producing bacterium-yeast consortium. Sci Adv. 2021;7:eabh4048. DOI:10.1126/sciadv.abh4048
  • Cox CE, Brandl MT, de Moraes MH, et al. Production of the plant hormone auxin by Salmonella and its role in the interactions with plants and animals. Front Microbiol. 2018;8:2668. DOI:10.3389/fmicb.2017.02668
  • Dankevych L, Leonova N, Dragovoz I, et al. The synthesis of plant growth stimulators by phytopathogenic bacteria as factor of pathogenicity. Appl Ecol Environ Res. 2018;16(2):1581–1593. DOI:10.15666/aeer/1602_15811593
  • Djami-Tchatchou AT, Harrison GA, Harper CP, et al. Dual role of auxin in regulating plant defense and bacterial virulence gene expression during Pseudomonas syringae PtoDC3000 pathogenesis. Mol Plant-Microbe Inter. 2020;33(8):1059–1071. DOI:10.1094/MPMI-02-20-0047-R
  • Vrabka J, Niehaus EM, Münsterkötter M, et al. Production and role of hormones during interaction of Fusarium species with maize (Zea mays L.) seedlings. Front Plant Sci. 2019;9(9):1936. DOI:10.3389/fpls.2018.01936
  • Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev. 2014;38(4):761–778. DOI:10.1111/1574-6976.12062
  • El-Sayed WS, Akhkha A, El-Naggar MY, et al. In vitro antagonistic activity, plant growth-promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol. 2014;5:651. DOI:10.3389/fmicb.2014.00651
  • Blazich FA, Heuser CW. The mung bean rooting bioassay: a re-examination. J Amer Soc Hort Sci. 1979;104(1):117–120. DOI:10.21273/JASHS.104.1.117
  • Jackson MB, Harney PM. Rooting cofactors, indole-acetic acid, and adventitious root initiation in mung bean cuttings (Phaseolus aureus). Can J Bot. 1970;48:943–946. DOI:10.1139/b70-132
  • Li S-W, Xue L, Xu S, et al. Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot. 2009;65:63–71. DOI:10.1016/j.envexpbot.2008.06.004
  • Druege U, Hilo A, Pérez-Pérez JM, et al. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Annal Bot. 2019;123:929–949. DOI:10.1093/aob/mcy234
  • Westerberg K, Elvang AM, Stackebrandt E, et al. Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol. 2000;50(6):2083–2092. DOI:10.1099/00207713-50-6-2083
  • Camargo FAO, Bento FM, Okeke BC, et al. Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Element Res. 2003;97(2):183–194. DOI:10.1385/BTER:97:2:183
  • Shen W, Yu X, Gao N, et al. Genome sequence of Arthrobacter sp. UKPF542, a plant growth-promoting rhizobacterial strain isolated from paddy soil. Microbiol Resour Announc. 2019;8:e01005–19. DOI:10.1128/MRA.01005-19
  • Sun YC, Sun P, Xue J, et al. Arthrobacter wenxiniae sp. nov., a novel plant growth-promoting rhizobacteria species harbouring a carotenoids biosynthetic gene cluster. Antonie Van Leeuwenhoek. 2022;115(3):353–364. DOI:10.1007/s10482-021-01701-9 (Erratum in: Antonie Van Leeuwenhoek 2022;115(5):697).
  • Chhetri G, Kim I, Kang M, et al. An isolated Arthrobacter sp. enhances rice (Oryza sativa L.) plant growth. Microorganisms. 2022;10:1187. DOI:10.3390/microorganisms10061187
  • Jiang Y, Song Y, Jiang C, et al. Identification and characterization of Arthrobacter nicotinovorans JI39, a novel plant growth-promoting rhizobacteria strain from Panax ginseng. Front Plant Sci. 2022;13:873621. DOI:10.3389/fpls.2022.873621
  • Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C, et al. The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula. Rev Argent Microbiol. 2016;48(4):342–346. DOI:10.1016/j.ram.2016.07.004
  • Mekonnen H, Kibret M. The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chem Biol Technol Agric. 2021;8:15. DOI:10.1186/s40538-021-00213-y
  • Jha CK, Aeron A, Patel BV, et al. Enterobacter: role in plant growth promotion. In: Maheshwari D, editor. Bacteria in agrobiology: plant growth responses. Berlin, Heidelberg: Springer; 2011. p. 159–182. DOI:10.1007/978-3-642-20332-9_8
  • Mayak S, Tirosh T, Glick BR. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul. 1999;18:49–53. DOI:10.1007/PL00007047
  • De Klerk G-J, Hanecakova J. Ethylene and rooting of mung bean cuttings. The role of auxin induced ethylene synthesis and phase-dependent effects. Plant Growth Regul. 2008;56:203–209. DOI:10.1007/s10725-008-9301-8
  • Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012;2012:963401. DOI:10.6064/2012/963401
  • Kollárová K, Henselová M, Lišková D. Effect of auxins and plant oligosaccharides on root formation and elongation growth of mung bean hypocotyls. Plant Growth Regul. 2005;46:1–9. DOI:10.1007/s10725-005-5185-z
  • Yang W, Zhu C, Ma X, et al. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings. PLoS One. 2013;8(12):e84580. DOI:10.1371/journal.pone.0084580
  • Li S-W, Shi R-F, Leng Y, et al. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics. 2016;17:43. DOI:10.1186/s12864-016-2372-4