531
Views
0
CrossRef citations to date
0
Altmetric
Articles

Potential of GTL biosolids in a circular economy: investigating blending, pyrolysis, activation, and characterisation

ORCID Icon, &
Pages 4017-4027 | Received 14 Mar 2023, Accepted 12 Jul 2023, Published online: 16 Aug 2023

References

  • Alhumoud JM. Municipal solid waste recycling in the gulf Co-operation council states. Resour Conserv Recycl 2005;45(2):142–158. doi:10.1016/j.resconrec.2005.01.010
  • Esen V, Oral B. Natural gas reserve/production ratio in Russia, Iran, Qatar and Turkmenistan: a political and economic perspective. Energy Policy. 2016;93:101–109. doi:10.1016/j.enpol.2016.02.037
  • Mariyam S, Cochrane L, Zuhara S, et al. Waste management in Qatar: a systematic literature review and recommendations for system strengthening. Sustain. 2022;14(15):1–23. doi:10.3390/su14158991
  • Fatima T, Mentel G, Doğan B, et al. Investigating the role of export product diversification for renewable, and non-renewable energy consumption in GCC (gulf cooperation council) countries: does the kuznets hypothesis exist? Environ. Dev. Sustain. 2022;24(6):8397–8417. doi:10.1007/s10668-021-01789-z
  • Okonkwo EC, Wole-Osho I, Bamisile O, et al. Grid integration of renewable energy in Qatar: potentials and limitations. Energy. 2021;235:121310, doi:10.1016/j.energy.2021.121310
  • Zuhara S, Pradhan S, Pasha M, et al. Potential of GTL-derived biosolids for water treatment: fractionization, leachate, and environmental risk analysis. Water (Switzerland). 2022;14(24):4016. doi:10.3390/w14244016
  • Mariyam S, Shahbaz M, Al-Ansari T, et al. A critical review on co-gasification and co-pyrolysis for gas production. Renew Sustain Energy Rev 2022;161(March):112349, doi:10.1016/j.rser.2022.112349
  • Zuhara S, Mackey HR, Al-Ansari T, et al. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Convers. Biorefinery. 2022, doi:10.1007/s13399-022-03011-0
  • Oginni O, Singh K, Oporto G, et al. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresour. Technol. Reports. 2019;8(July):100307, doi:10.1016/j.biteb.2019.100307
  • Fakayode OA, Aboagarib EAA, Zhou C, et al. Co-pyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar – A review. Bioresour Technol 2020;297(September 2019):122408, doi:10.1016/j.biortech.2019.122408
  • Park J, Hung I, Gan Z, et al. Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour Technol 2013;149:383–389. doi:10.1016/j.biortech.2013.09.085
  • Panwar NL, Pawar A. Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers. Biorefinery. 2022;12(3):925–947. doi:10.1007/s13399-020-00870-3
  • Ding Z, Wan Y, Hu X, et al. Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: importance of physicochemical properties. J Ind Eng Chem 2016;37:261–267. doi:10.1016/j.jiec.2016.03.035
  • Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 2015;45:359–378. doi:10.1016/j.rser.2015.01.050
  • Crombie K, Sohi SP, Brownsort P, et al. The effect of pyrolysis conditions on biochar stability as determined by three methods. Gcb Bioenergy. 2013;5(2):122–131. doi:10.1111/gcbb.12030
  • Berek AK, Hue NV. Characterization of biochars and their use as an amendment to acid soils. Soil Sci 2016;181(9–10):412–426. doi:10.1097/SS.0000000000000177
  • Aktar S, et al. Effects of temperature and carrier gas on physico-chemical properties of biochar derived from biosolids. J Anal Appl Pyrolysis. 2022;164(March):105542, doi:10.1016/j.jaap.2022.105542
  • Oginni O, Singh K, Oporto G, et al. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour. Technol. Reports. 2019;7(April):100266, doi:10.1016/j.biteb.2019.100266
  • Karapınar HS. Adsorption performance of activated carbon synthesis by ZnCl2, KOH, H3PO4 with different activation temperatures from mixed fruit seeds. Environ. Technol. (United Kingdom). 2022;43(9):1417–1435. doi:10.1080/09593330.2021.1968507
  • Bushra B, Remya N. Biochar from pyrolysis of rice husk biomass—characteristics, modification and environmental application. Biomass Convers. Biorefinery. 2020: 7–12. doi:10.1007/s13399-020-01092-3
  • Tan G, Sun W, Xu Y, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Bioresour Technol 2016;211:727–735. doi:10.1016/j.biortech.2016.03.147
  • Roychand R, et al. Recycling biosolids as cement composites in raw, pyrolyzed and ashed forms: a waste utilisation approach to support circular economy. J. Build. Eng. 2021;38(December 2020):102199, doi:10.1016/j.jobe.2021.102199
  • Wang X, Li C, Li Z, et al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol Environ Saf 2019;168(October 2018):45–52. doi:10.1016/j.ecoenv.2018.10.022
  • Lu T, Yuan H, Wang Y, et al. Characteristic of heavy metals in biochar derived from sewage sludge. J. Mater. Cycles Waste Manag. 2016;18(4):725–733. doi:10.1007/s10163-015-0366-y
  • Mosa A, El-Banna MF, Gao B. Biochar filters reduced the toxic effects of nickel on tomato (lycopersicon esculentum L.) grown in nutrient film technique hydroponic system. Chemosphere. 2016;149:254–262. doi:10.1016/j.chemosphere.2016.01.104
  • Molla MR, et al. Facile extraction and characterization of calcium hydroxide from paper mill waste sludge of Bangladesh. R. Soc. Open Sci. 2022;9(8):220681. doi:10.1098/rsos.220681
  • Cherkas O, Beuvier T, Fall S, et al. X-ray absorption and diffraction analysis for determination of the amount of calcium carbonate and porosity in paper sheets. Cellulose. 2016;23(5):2831–2840. doi:10.1007/s10570-016-1001-3
  • Cusioli LF, Quesada HB, Barbosa de Andrade M, et al. Application of a novel low-cost adsorbent functioned with iron oxide nanoparticles for the removal of triclosan present in contaminated water. Microporous Mesoporous Mater 2021;325(June):111328. doi:10.1016/j.micromeso.2021.111328
  • Almanassra IW, et al. Palm leaves based biochar: advanced material characterization and heavy metal adsorption study. Biomass Convers. Biorefinery. 2022;(Ii), doi:10.1007/s13399-022-03590-y
  • Al-Gaashani R, Najjar A, Zakaria Y, et al. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 2019;45(11):14439–14448. doi:10.1016/j.ceramint.2019.04.165
  • Al-Gaashani R, Zakaria Y, Lee OS, et al. Effects of preparation temperature on production of graphene oxide by novel chemical processing. Ceram Int 2021;47(7):10113–10122. doi:10.1016/j.ceramint.2020.12.159
  • Nahil MA, Williams PT. Surface chemistry and porosity of nitrogen-containing activated carbons produced from acrylic textile waste. Chem Eng J 2012;184:228–237. doi:10.1016/j.cej.2012.01.047
  • Puziy AM, Poddubnaya OI, Socha RP, et al. XPS and NMR studies of phosphoric acid activated carbons. Carbon N. Y. 2008;46(15):2113–2123. doi:10.1016/j.carbon.2008.09.010
  • Teo EYL, et al. High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta. 2016;192:110–119. doi:10.1016/j.electacta.2016.01.140
  • Shetty R, Prakash NB. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci Rep 2020;10(1):1–10. doi:10.1038/s41598-020-69262-x
  • Chintala R, Mollinedo J, Schumacher TE, et al. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014;60(3):393–404. doi:10.1080/03650340.2013.789870
  • Zhang Y, Maierdan Y, Guo T, et al. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete. Constr Build Mater 2022;343(January):128116, doi:10.1016/j.conbuildmat.2022.128116
  • Mona S, Malyan SK, Saini N, et al. Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere. 2021;275:129856, doi:10.1016/j.chemosphere.2021.129856
  • Chen H, et al. Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Res. 2022;1(1):1–25. doi:10.1007/s44246-022-00005-5
  • Tan Z, Yuan S, Hong M, et al. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J Hazard Mater 2020;384(February 2019):121370. doi:10.1016/j.jhazmat.2019.121370
  • Pan M. Biochar adsorption of antibiotics and its implications to remediation of contaminated soil. Water. Air. Soil Pollut. 2020;231(5):221. doi:10.1007/s11270-020-04551-9
  • Schmidt HP, Hagemann N, Draper K, et al. The use of biochar in animal feeding. PeerJ. 2019;2019(7):1–54. doi:10.7717/peerj.7373
  • Jjagwe J, Olupot PW, Menya E, et al. Synthesis and application of granular activated carbon from biomass waste materials for water treatment: a review. J. Bioresour. Bioprod. 2021;6(4):292–322. doi:10.1016/j.jobab.2021.03.003
  • Barbusinski K, Kalemba K, Kasperczyk D, et al. Biological methods for odor treatment – a review. J Clean Prod 2017;152:223–241. doi:10.1016/j.jclepro.2017.03.093
  • Kim M, Lim GT, Kim YJ, et al. A novel electrostatic precipitator-type small air purifier with a carbon fiber ionizer and an activated carbon fiber filter. J Aerosol Sci 2018;117(September 2017):63–73. doi:10.1016/j.jaerosci.2017.12.014