80
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pulsed electric field enhanced Bacillus sp. DL4 biodegradation of triclosan: focusing on operational performance and metabolomic analysis

, ORCID Icon, , &
Pages 4028-4041 | Received 04 Apr 2023, Accepted 07 Jul 2023, Published online: 29 Jul 2023

References

  • Qu G, Li X, Hu L. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environ Sci Technol. 2020;54(7):3730–3732. doi:10.1021/acs.est.0c01102
  • Goodman M, Naiman DQ, LaKind JS. Systematic review of the literature on triclosan and health outcomes in humans. Crit Rev Toxicol. 2018;48(1/10):1–51. doi:10.1080/10408444.2017.1350138
  • Zhang J, Walker ME, Sanidad KZ. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat Commun. 2022;13(1):136. doi:10.1038/s41467-021-27762-y
  • Wang M, Hu B, Zhou W, et al. Enhanced hand-to-mouth exposure from hand sanitizers during the COVID-19 pandemic: a case study of triclosan. Sci Bull. 2022;67(10):995–998. doi:10.1016/j.scib.2022.03.016
  • Ahn KC, Zhao B, Chen J, et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect. 2008;116(9):1203–1210. doi:10.1289/ehp.11200
  • Zhao JL, Ying GG, Liu YS, et al. Occurrence and risks of triclosan and triclocarban in the Pearl River system, south China: from source to the receiving environment. J Hazard Mater. 2010;179(1-3):215–222. doi:10.1016/j.jhazmat.2010.02.082
  • Lopez-Avila V, Hites RA. Organic compounds in an industrial wastewater. their transport into sediments. Environ Sci Technol. 1980;14(11):1382–1390. doi:10.1021/es60171a007
  • Peng FJ, Pan CG, Zhang M, et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Sci Total Environ. 2017;589(1):46–55. doi:10.1016/j.scitotenv.2017.02.200
  • Kim Y, Murugesan K, Schmidt S, et al. Triclosan susceptibility and co-metabolism – a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol. 2011;102(3):2206–2212. doi:10.1016/j.biortech.2010.10.009
  • Iovino P, Chianese S, Prisciandaro M, et al. Triclosan photolysis: operating condition study and photo-oxidation pathway. Chem Eng J. 2019;377(1):121045. doi:10.1016/j.cej.2019.02.132
  • Qu C, Ren N, Zhang S, et al. Degradation of triclosan by anodic oxidation/in-situ peroxone process: kinetics, pathway and reaction mechanism. Chemosphere. 2021;272:129453. doi:10.1016/j.chemosphere.2020.129453
  • Wang SX, Chen Z, Wang ZR, et al. Enhanced degradation of triclosan using UV–Fe2+ synergistic activation of peracetic acid. Environ Sci: Water Res Technol. 2021;7(3):630–637. doi:10.1039/D0EW01095B
  • Chen X, Richard J, Liu Y, et al. Ozonation products of triclosan in advanced wastewater treatment. Water Res 2012;46(7):2247–2256. doi:10.1016/j.watres.2012.01.039
  • Wong-Wah-Chung P, Rafqah S, Voyard G, et al. Photochemical behaviour of triclosan in aqueous solutions: kinetic and analytical studies. J Photochem Photobiol, A. Chem. 2007;191(2-3):201–208. doi:10.1016/j.jphotochem.2007.04.024
  • Liu Y, Zhu X, Qian F, et al. Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Adv. 2014;4(4):63620–63626. doi:10.1039/C4RA11815D
  • Kimbell LK, Tong Y, Mayer BK, et al. Biosolids-derived biochar for triclosan removal from wastewater. Environ Eng Sci. 2018;35(6):513–524. doi:10.1089/ees.2017.0291
  • Cabana H, Jiwan JL, Rozenberg R, et al. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere. 2007;67(4):770–778. doi:10.1016/j.chemosphere.2006.10.037
  • Li J, Peng J, Zhang Y, et al. Removal of triclosan via peroxidases-mediated reactions in water: reaction kinetics, products and detoxification. J Hazard Mater. 2016;310(5):152–160. doi:10.1016/j.jhazmat.2016.02.037
  • McAvoy DC, Schatowitz B, Jacob M, et al. Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem. 2002;21(7):1323–1329. doi:10.1002/etc.5620210701
  • Singer H, Mueller S, Tixier C, et al. Triclosan:  occurrence and fate of a widely used biocide in the aquatic environment:  field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol. 2002;36(23):4998–5004. doi:10.1021/es025750i
  • Hay AG, Dees PM, Sayler GS. Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol. 2001;36(2-3):105–112. doi:10.1111/j.1574-6941.2001.tb00830.x
  • Stasinakis AS, Kordoutis CI, Tsiouma VC, et al. Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Bioresoure Technology. 2010;101(7):2090–2095. doi:10.1016/j.biortech.2009.10.086
  • Roh H, Subramanya N, Zhao F, et al. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere. 2009;77(8):1084–1089. doi:10.1016/j.chemosphere.2009.08.049
  • Lee DG, Zhao F, Rezenom YH, et al. Biodegradation of triclosan by a wastewater microorganism. Water Res. 2012;46(13):4226–4234. doi:10.1016/j.watres.2012.05.025
  • Kim YM, Murugesan K, Schmidt S, et al. Triclosan susceptibility and co-metabolism - a comparison for three aerobic pollutant-degrading bacteria. Bioresour Technol. 2011;102(3):2206–2212. doi:10.1016/j.biortech.2010.10.009
  • Barba FJ, Parniakov O, Pereira SA, et al. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int. 2015;77(4):773–798. doi:10.1016/j.foodres.2015.09.015
  • Pakhomov AG, Miklavèiè D, Markov MS. Advanced electroporation techniques in biology and medicine. In: PG Andrei, M Damijan, MS Marko, editors. Food and biomaterial processing assisted by electroporation. FL: CRC Press; 2010. p. 463–490.
  • Mellor RB, Ronnenberg J, Campbell WH, et al. Cheminform abstract: reduction of nitrate and nitrite in water by immobilized enzymes. ChemInform Abstract. 1992; 23(22):no–no. doi:10.1002/chin.199222252
  • Koners U, Heinz V, Knorr D. (2006). Effects of pulsed electric field (PEF) application on activated wastewater treatment sludge. 1st Euro-Asian Pulsed Power Conference (EAPPC06). 18–22.
  • Lee JS, Chang IS. Membrane fouling control and sludge solubilization using high voltage impulse (HVI) electric fields. Process Biochem. 2014;49(5):858–862. doi:10.1016/j.procbio.2014.03.001
  • Rittmann BE, Lee HS, Zhang H. Full-scale application of focused-pulsed pre-treatment for improving biosolids digestion and conversion to methane. Med Inf Sci Ref. 2008: 1895–1901. doi:10.2166/wst.2008.547
  • Zhang C, Li L, Hu XM, et al. Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature. Bioresour Technol. 2019;275:225–231. doi:10.1016/j.biortech.2018.12.037
  • Wang F, Li L, Li XJ, et al. Pulsed electric field promotes the growth metabolism of aerobic denitrifying bacteria Pseudomonas putida W207-14 by improving cell membrane permeability. Environ Technol. 2023: 2327. doi:10.1080/09593330.2022.2027028
  • Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007;3(3):211–221. doi:10.1007/s11306-007-0082-2
  • Qi X, Yin H, Zhu M, et al. Understanding the role of biochar in affecting BDE-47 biodegradation by Pseudomonas plecoglossicida: An integrated analysis using chemical, biological, and metabolomic approaches. Water Res 2022;220(15):118679. doi:10.1016/j.watres.2022.118679
  • Wang H, Hua J, Yu Q, et al. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem. 2021;363(30):130131. doi:10.1016/j.foodchem.2021.130131
  • Zhan Q, Thakur K, Feng JY, et al. LC–MS based metabolomics analysis of Okara fermented by Bacillus subtilis DC-15: insights into nutritional and functional profile. Food Chem. 2023;413(1):135656. doi:10.1016/j.foodchem.2023.135656
  • Mo JZ, Ma ZH, Yan SW, et al. Metabolomic profiles in a green alga (Raphidocelis subcapitata) following erythromycin treatment: ABC transporters and energy metabolism. J Environ Sci. 2023;124:591–601. doi:10.1016/j.jes.2021.12.001
  • Wang P, Ng QX, Zhang H, et al. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. Ecotoxicological Environ Saf. 2018;163:266–273. doi:10.1016/j.ecoenv.2018.07.080
  • Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS One. 2015;10(3):e0119712. doi:10.1371/journal.pone.0119712
  • Mutaguchi Y, Kasuga K, Kojima I. Production of D-branched-chain amino acids by lactic acid bacteria carrying homologs to isoleucine 2-epimerase of Lactobacillus buchneri. Front Microbiol. 2018;9:1540. doi:10.3389/fmicb.2018.01540
  • Thompson MG, Blake-Hedges JM, Cruz-Morales P, et al. Massively parallel fitness profiling reveals multiple novel enzymes in Pseudomonas putida lysine metabolism. MBioloy. 2019; 10(3):e02577–18. doi:10.1101/450254
  • Hu Y, Cronan JE. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nat Commun. 2020;11(1):5598. doi:10.1038/s41467-020-19251-5
  • Neshich IA, Kiyota E, Arruda P. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. ISME J. 2013;7(12):2400–2410. doi:10.1038/ismej.2013.123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.