91
Views
1
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of calcined Ni/Mo hydrotalcite for the effective removal of lead from wastewater

& ORCID Icon
Pages 4096-4115 | Received 11 May 2023, Accepted 20 Jul 2023, Published online: 29 Jul 2023

References

  • Yarkandi N. Removal of lead (II) from waste water by adsorption. Int J Curr Microbiol Appl Sci. 2014;3(4):207–228.
  • Mouflih M, Aklil A, Jahroud N, et al. Removal of lead from aqueous solutions by natural phosphate. Hydrometallurgy. 2006;81(3–4):219–225. doi:10.1016/j.hydromet.2005.12.011
  • Yu S, Wang X, Pang H, et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem Eng J. 2018;333:343–360. doi:10.1016/j.cej.2017.09.163
  • Mahmud HNME, Huq AKO, Binti Yahya R. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 2016;6(18):14778–14791. doi:10.1039/C5RA24358K
  • Singh C, Sahu J, Mahalik K, et al. Studies on the removal of Pb (II) from wastewater by activated carbon developed from tamarind wood activated with sulphuric acid. J Hazard Mater. 2008;153(1–2):221–228. doi:10.1016/j.jhazmat.2007.08.043
  • Xu Z, Gu S, Rana D, et al. Chemical precipitation enabled UF and MF filtration for lead removal. J Water Process Eng. 2021;41:101987. doi:10.1016/j.jwpe.2021.101987
  • Jamshidifard S, Koushkbaghi S, Hosseini S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions. J Hazard Mater. 2019;368:10–20. doi:10.1016/j.jhazmat.2019.01.024
  • Chidiac C, Kim Y, de Lannoy C. Enhanced Pb (II) removal from water using conductive carbonaceous nanomaterials as bacterial scaffolds: an experimental and modelling approach. J Hazard Mater. 2022;431:128516. doi:10.1016/j.jhazmat.2022.128516
  • Wu J, Wang T, Wang J, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: enhanced the ion exchange and precipitation capacity. Sci Total Environ. 2021;754:142150. doi:10.1016/j.scitotenv.2020.142150
  • Kumar V, Wanchoo RK, Toor AP. Photocatalytic reduction and crystallization hybrid system for removal and recovery of lead (Pb). Ind Eng Chem Res. 2021;60(24):8901–8910. doi:10.1021/acs.iecr.1c01169
  • Vesali-Naseh M, Naseh MRV, Ameri P. Adsorption of Pb (II) ions from aqueous solutions using carbon nanotubes: a systematic review. J Clean Prod. 2021;291:125917. doi:10.1016/j.jclepro.2021.125917
  • Razzak SA, Faruque MO, Alsheikh Z, et al. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ Adv. 2022;7:100168. doi:10.1016/j.envadv.2022.100168
  • Hassan F, AL-Baidhani A, Sahira AK. Bioadsorption of heavy metals from industrial wastewater using some species of bacteria. Baghdad Sci J. 2016;13(3):435–448. doi:10.21123/bsj.13.3.435-448
  • Ghaly AE, Ananthashankar R, Alhattab MVVR, et al. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol. 2014;5(1):1–19. doi:10.4172/2157-7048.1000182
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98(12):2243–2257. doi:10.1016/j.biortech.2005.12.006
  • Ou B, Wang J, Wu Y, et al. Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light. Chem Eng J. 2020;380:122600. doi:10.1016/j.cej.2019.122600
  • Sobhanardakani S, Ahmadi M, Zandipak R. Efficient removal of Cu (II) and Pb (II) heavy metal ions from water samples using 2, 4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles. J Water Supply Res Technol-AQUA. 2016;65(4):361–372. doi:10.2166/aqua.2016.100
  • Tamjidi S, Ameri A. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Environ Sci Pollut R. 2020;27:31105–31119. doi:10.1007/s11356-020-09655-7
  • Varsha M, Kumar PS, Rathi BS. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. Chemosphere. 2022;287:132270. doi:10.1016/j.chemosphere.2021.132270
  • Kamarzamann FF, Abdullah MMAB, Abd Rahim SZ, et al. Hydroxyapatite/dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials. Constr Build Mater. 2022;349:128603. doi:10.1016/j.conbuildmat.2022.128603
  • Asrat Y, Adugna AT, Kamaraj M, et al. Adsorption phenomenon of arundinaria alpina stem-based activated carbon for the removal of lead from aqueous solution. J Chem N-Y. 2021;2021:1–9. doi:10.1155/2021/5554353
  • Hussain T, Hussain AI, Chatha SAS, et al. Synthesis and characterization of Na-zeolites from textile waste ash and its application for removal of lead (Pb) from wastewater. Int J Environ Res Public Health. 2021;18(7):3373. doi:10.3390/ijerph18073373
  • Zhang T, Wang W, Zhao Y, et al. Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem Eng J. 2021;420:127574. doi:10.1016/j.cej.2020.127574
  • Li A, Zhang Y, Ge W, et al. Removal of heavy metals from wastewaters with biochar pyrolyzed from MgAl-layered double hydroxide-coated rice husk: mechanism and application. Bioresource Technol. 2022;347:126425. doi:10.1016/j.biortech.2021.126425
  • Yang L, Xie L, Chu M, et al. Mo3S132− intercalated layered double hydroxide: highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons. Angew Chem Int Edit. 2022;134(1):e202112511. doi:10.1002/ange.202112511
  • Gu P, Zhang S, Li X, et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ Pollut. 2018;240:493–505. doi:10.1016/j.envpol.2018.04.136
  • Chen H, Gong Z, Zhuo Z, et al. Tunning the defects in lignin-derived-carbon and trimetallic layered double hydroxides composites (LDH@ LDC) for efficient removal of U (VI) and Cr (VI) in aquatic environment. Chem Eng J. 2022;428:132113. doi:10.1016/j.cej.2021.132113
  • Feng X, Long R, Wang L, et al. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep Purif Technol. 2022;284:120099. doi:10.1016/j.seppur.2021.120099
  • Eiby SHJ, Tobler DJ, Nedel S, et al. Competition between chloride and sulphate during the reformation of calcined hydrotalcite. Appl Clay Sci. 2016;132:650–659. doi:10.1016/j.clay.2016.08.017
  • Jiménez-López BA, Leyva-Ramos R, Salazar-Rábago JJ, et al. Adsorption of selenium (iv) oxoanions on calcined layered double hydroxides of Mg-Al-CO3 from aqueous solution. Effect of calcination and reconstruction of lamellar structure. Environ Nanotechnol Monit Manage. 2021;16:100580. doi:10.1016/j.enmm.2021.100580
  • Zeng B, Wang Q, Mo L, et al. Synthesis of Mg-Al LDH and its calcined form with natural materials for efficient Cr (VI) removal. J Environ Chem Eng. 2022;10(6):108605. doi:10.1016/j.jece.2022.108605
  • Zhang SQ, Hou WG. Sorption removal of Pb (II) from solution by uncalcined and calcined MgAl-layered double hydroxides. Chinese J Chem. 2007;25(10):1455–1460. doi:10.1002/cjoc.200790269
  • Rahmanian O, Amini S, Dinari M. Preparation of zinc/iron layered double hydroxide intercalated by citrate anion for capturing lead (II) from aqueous solution. J Mol Liq. 2018;256:9–15. doi:10.1016/j.molliq.2018.02.018
  • Sun M, Xiao Y, Zhang L, et al. High uptake of Cu2+, Zn2+ or Ni2+ on calcined MgAl hydroxides from aqueous solutions: changing adsorbent structures. Chem Eng J. 2015;272:17–27. doi:10.1016/j.cej.2015.03.009
  • Soltani R, Pelalak R, Pishnamazi M, et al. A novel and facile green synthesis method to prepare LDH/MOF nanocomposite for removal of Cd (II) and Pb (II). Sci Rep-UK. 2021;11(1):1609. doi:10.1038/s41598-021-81095-w
  • Mahmoud RK, Kotp AA, El-Deen AG, et al. Novel and effective Zn-Al-GA LDH anchored on nanofibers for high-performance heavy metal removal and organic decontamination: bioremediation approach. Water Air Soil Poll. 2020;231:1–18. doi:10.1007/s11270-020-04629-4
  • Ling F, Fang L, Lu Y, et al. A novel CoFe layered double hydroxides adsorbent: high adsorption amount for methyl orange dye and fast removal of Cr (VI). Micropor Mesopor Mat. 2016;234:230–238. doi:10.1016/j.micromeso.2016.07.015
  • Wang Y, Dai X, Zhou Q, et al. Insights into the role of metal cation substitution on the anionic dye removal performance of CoAl-LDH. Colloid Surface A. 2022;636:128139. doi:10.1016/j.colsurfa.2021.128139
  • Hong SP, Yoon H, Lee J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization. J Colloid Interf Sci. 2020;564:1–7. doi:10.1016/j.jcis.2019.12.068
  • González MA, Pavlovic I, Rojas-Delgado R, et al. Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide–humate hybrid. sorbate and sorbent comparative studies. Chem Eng J. 2014;254:605–611. doi:10.1016/j.cej.2014.05.132
  • Laipan M, Fu H, Zhu R, et al. Calcined Mg/Al-LDH for acidic wastewater treatment: simultaneous neutralization and contaminant removal. Appl Clay Sci. 2018;153:46–53. doi:10.1016/j.clay.2017.12.002
  • Tian LY, Ma W, Han M. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide. Chem Eng J. 2010;156(1):134–140. doi:10.1016/j.cej.2009.10.008
  • Yousef NS, Farouq R, Hazzaa R. Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models. Desalin Water Treat. 2016;57(46):21925–21938. doi:10.1080/19443994.2015.1132474
  • Elovich SY, Larinov OG. Theory of adsorption from solutions of nonelectrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR Otd Khim Nauk. 1962;2(2):209–216.
  • Sari A, Tuzen M. Equilibrium,: thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae Padina Pavonica biomass. J Hazard Mater. 2009;171(1–3):973–979. doi:10.1016/j.jhazmat.2009.06.101
  • Lv T, Ma W, Xin G, et al. Physicochemical characterization and sorption behior of Mg–Ca–Al (NO3) hydrotalcite-like compounds toward removal of fluoride from protein solutions. J Hazard Mater. 2012;237:121–132. doi:10.1016/j.jhazmat.2012.08.014
  • Zhou H, Jiang Z, Wei S. A new hydrotalcite-like adsorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Appl Clay Sci. 2018;153:29–37. doi:10.1016/j.clay.2017.11.033
  • Chaillot D, Bennici S, Brendlé J. Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environ Sci Pollut R. 2020;28:24375–24405. doi:10.1007/s11356-020-08498-6
  • Abdelsadek Z, Gonzalez-Cortes S, Bali F, et al. Evaluation of the reactivity, selectivity and lifetime of hydrotalcite-based catalysts using isopropanol as probe molecule. Res Chem Intermediat. 2022;48(3):1073–1093. doi:10.1007/s11164-021-04640-2
  • Cai P, Zheng H, Chang D, et al. Competitive adsorption characteristics of fluoride and phosphate on calcined MgAl-CO3 layered double hydroxides. J Hazard Mater. 2012;213:100–108. doi:10.1016/j.jhazmat.2012.01.069
  • Sui M, Zhou Y, Sheng L, et al. Adsorption of norfloxacin in aqueous solution by Mg–Al layered double hydroxides with variable metal composition and interlayer anions. Chem Eng J. 2012;210:451–460. doi:10.1016/j.cej.2012.09.026
  • Labajos FM, Rives V, Ulibarri MA. Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials. J Mater Sci. 1992;27:1546–1552. doi:10.1007/BF00542916
  • Wang X, Cheng B, Zhang L, et al. Synthesis of MgNiCo LDH hollow structure derived from ZIF-67 as superb adsorbent for Congo red. J Colloid Interf Sci. 2022;612:598–607. doi:10.1016/j.jcis.2021.12.176
  • Sun X, Huang H, Zhu Y, et al. Adsorption of Pb2+ and Cd2+ onto Spirulina platensis harvested by polyacrylamide in single and binary solution systems. Colloids Surf A Physicochem Eng Asp. 2019;583:123926. doi:10.1016/j.colsurfa.2019.123926
  • Giles CH, MacEwan TH, Nakhwa SN, et al. Studies in adsorption: Part IX. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific areas of solids. J Chem Soc. 1960;111:3973–3993. doi:10.1039/jr9600003973
  • Park JH, Ok YS, Kim SH, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere. 2016;142:77–83. doi:10.1016/j.chemosphere.2015.05.093
  • Du HH, Chen WL, Cai P, et al. Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite. Environ Pollut. 2016;218:168–175. doi:10.1016/j.envpol.2016.08.022
  • Módenes AN, Espinoza-Quiñones FR, Colombo A, et al. Inhibitory effect on the uptake and diffusion of Cd2+ onto soybean hull sorbent in Cd–Pb binary sorption systems. J Environ Manage. 2015;154:22–32. doi:10.1016/j.jenvman.2015.02.022
  • Liu J, Wang N, Zhang H, et al. Adsorption of Congo red dye on FexCo3-xO4 nanoparticles. J Environ Manage. 2019;238:473–483. doi:10.1016/j.jenvman.2019.03.009
  • Mahamadi C, Nharingo T. Competitive adsorption of Pb2+, Cd2+ and Zn2+ ions onto Eichhornia crassipes in binary and ternary systems. Bioresour Technol. 2010;101(3):859–864. doi:10.1016/j.biortech.2009.08.097
  • Mostafa MS, Bakr ASA, El Naggar AM, et al. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co+2Mo+6 LDH. J Colloid Interf Sci. 2016;461:261–272. doi:10.1016/j.jcis.2015.08.060
  • Châtelet L, Bottero JV, Yvon J, et al. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloid Surface A. 1996;111(3):167–175. doi:10.1016/0927-7757(96)03542-X
  • Alvarez-Ayuso E, Nugteren HW. Purification of chromium (VI) finishing wastewaters using calcined and uncalcined MgAl-CO3 hydrotalcite. Water Res. 2005;39(12):2535–2542. doi:10.1016/j.watres.2005.04.069
  • Kumar KV, Porkodi K. Mass transfer,: kinetics and equilibrium studies for the biosorption of methylene blue using paspalum notatum. J Hazard Mat. 2007;146(1–2):214–226. doi:10.1016/j.jhazmat.2006.12.010
  • Manera C, Tonello AP, Perondi D, et al. Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies. Environ Technol. 2019;40(21):2756–2768. doi:10.1080/09593330.2018.1452984
  • Vadivelan V, Kumar KV. Equilibrium,: kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interf Sci. 2005;286(1):90–100. doi:10.1016/j.jcis.2005.01.007
  • Liang X, Zang Y, Xu Y, et al. Sorption of metal cations on layered double hydroxides. Colloid Surface A. 2013;433:122–131. doi:10.1016/j.colsurfa.2013.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.