92
Views
1
CrossRef citations to date
0
Altmetric
Articles

Distribution and removal pathways of heavy metals during the operation of sludge treatment wetlands

, ORCID Icon, , , , & show all
Pages 4146-4155 | Received 16 Feb 2023, Accepted 14 Jul 2023, Published online: 07 Aug 2023

References

  • Peruzzi E, Masciandaro G, Macci C, et al. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands. Ecol Eng. 2011;37(5):771–778. doi:10.1016/j.ecoleng.2010.05.009
  • Martinez F, Cuevas G, Calvo R, et al. Biowaste effects on soil and native plants in a semiarid ecosystem. J Environ Qual. 2003;32(2):472–479. doi:10.2134/jeq2003.4720
  • Saleh T. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ Technol Innov. 2021;24:101821. doi:10.1016/j.eti.2021.101821
  • Saleh T. Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov. 2020;20:101067. doi:10.1016/j.eti.2020.101067
  • He X, Qiu X, Hu C, et al. Treatment of heavy metal ions in wastewater using layered double hydroxides: a review. J Disper Sci Technol. 2018;39(6):792–801. doi:10.1080/01932691.2017.1392318
  • Alkenani A, Saleh T. Synthesis of amine-modified graphene integrated membrane as protocols for simultaneous rejection of hydrocarbons pollutants, metal ions, and salts from water. J Mol Liq. 2022;367:120291. doi:10.1016/j.molliq.2022.120291
  • Peng GQ, Tian GM, Liu JZ, et al. Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination. 2011;271(1-3):100–104. doi:10.1016/j.desal.2010.12.015
  • Saleh T. Global trends in technologies and nanomaterials for removal of sulfur organic compounds. Clean energy and green environment. J Mol Liq. 2022;359:119340. doi:10.1016/j.molliq.2022.119340
  • Saleh T. Advanced trends of shale inhibitors for enhanced properties of water-based drilling fluid. Upstre Oil Gas Tech. 2022;8:100069. doi:10.1016/j.upstre.2022.100069
  • Saleh T. Experimental and analytical methods for testing inhibitors and fluids in water-based drilling environments. TrAC-Trend Anal Chem (Regular Ed.). 2022;149:116543. doi:10.1016/j.trac.2022.116543
  • Mulligan CN, Kamali M, Gibbs BF. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. J Hazard Mater. 2004;110(1-3):77–84. doi:10.1016/j.jhazmat.2004.02.040
  • Uggetti E, Llorens E, Pedescoll A, et al. Sludge dewatering and stabilization in drying reed beds: characterization of three full-scale systems in Catalonia, Spain. Bioresour Technol. 2009;100(17):3882–3890. doi:10.1016/j.biortech.2009.03.047
  • Pempkowiak J, Obarska-Pempkowiak H. Long-term changes in sewage sludge stored in a reed bed. Sci Total Environ. 2002;297(1-3):59–65. doi:10.1016/S0048-9697(02)00023-2
  • Edwards JK, Gray KR, Cooper DJ, et al. Reed bed dewatering of agricultural sludges and slurries. Water Sci Tech. 2001;44(11-12):551–558. doi:10.2166/wst.2001.0879
  • Ma JW, Cui YB, Li AM, et al. Tracking macrolides, sulfonamides, fluoroquinolones, and tetracyclines in sludge treatment wetlands during loading and resting periods. Sep Purif Technol. 2021;279:119599. doi:10.1016/j.seppur.2021.119599
  • Knox AS, Paller MH, Seaman JC, et al. Removal, distribution and retention of metals in a constructed wetland over 20 years. Sci Total Environ. 2021;149062. doi:10.1016/j.scitotenv.2021.149062
  • Hejabi AT, Basavarajappa HT, Karbassi AR, et al. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ Monit Assess. 2011;182(1-4):1–13. doi:10.1007/s10661-010-1854-0
  • Obarska-Pempkowiak H. Retention of selected heavy metals: Cd, Cu, Pb in a hybrid wetland system. Water Sci Technol. 2001;44(11-12):463. doi:10.2166/wst.2001.0867
  • Stefanakis AI, Tsihrintzis VA. Heavy metal fate in pilot-scale sludge drying reed beds under various design and operation conditions. J Hazard Mater. 2012;213-214(7):393–405. doi:10.1016/j.jhazmat.2012.02.016.
  • Matamoros V, Nguyen LX, Arias CA, et al. Musk fragrances, DEHP and heavy metals in a 20 years old sludge treatment reed bed system. Water Res. 2012;46(12):3889–3896. doi:10.1016/j.watres.2012.04.027
  • Hu SS, She XL, Wei XD, et al. Surplus sludge treatment in two sludge treatment beds under subtropical condition in China. Int Biodeterior Biodegradation. 2017;119:377–386. doi:10.1016/j.ibiod.2016.11.005
  • Sima J, Svoboda L, Pomijova Z. Removal of selected metals from wastewater using a constructed wetland. Chem Biodivers. 2016;13(5):582–590. doi:10.1002/cbdv.201500189
  • Grisey E, Laffray X, Contoz O, et al. The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Poll. 2012;223(4):1723–1741. doi:10.1007/s11270-011-0978-3
  • Shanker AK, Djanaguiraman M, Sudhagar R, et al. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci. 2004;166(4):1035–1043. doi:10.1016/j.plantsci.2003.12.015
  • Vymazal J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ. 2016;544:495–498. doi:10.1016/j.scitotenv.2015.12.011
  • Peruzzi E, Macci C, Doni S, et al. Stabilization process in reed bed systems for sludge treatment. Ecol Eng. 2017;102:381–389. doi:10.1016/j.ecoleng.2017.02.017
  • Yeh TY, Chou CC, Pan CT. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination. 2009;249(1):368–373. doi:10.1016/j.desal.2008.11.025
  • MacFarlane GR, Koller CE, Blomberg SP. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere. 2007;69(9):1454–1464. doi:10.1016/j.chemosphere.2007.04.059
  • Kosolapov DB, Kuschk P, Vainshtein MB, et al. Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci. 2004;4(5):403–411. doi:10.1002/elsc.200420048
  • Yeh TY. Removal of metals in constructed wetlands: review. Pract Period Hazard Toxic Radioact Waste Manag. 2008;12(1):96–101. doi:10.1061/(ASCE)1090-025X(2008)12:2(96)
  • Yu G, Wang G, Chi T, et al. Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ. 2022: 153516. doi:10.1016/j.scitotenv.2022.153516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.