124
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology

, , ORCID Icon &
Pages 4156-4168 | Received 24 Feb 2023, Accepted 19 Jul 2023, Published online: 08 Aug 2023

References

  • Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 2002;42:35–56. doi:10.1016/S1040-8428(01)00214-1
  • Masindi V, Muedi KL. Environmental contamination by heavy metals. In: Heavy Metals, Hosam El-Din M. Saleh and Refaat F. Aglan (Eds), Chapter 7, IntechOpen; 2018. doi:10.5772/intechopen.76082
  • Müller T, Friedrich B. Development of a recycling process for nickel-metal hydride batteries. J Power Sources. 2006;158:1498–1509. doi:10.1016/j.jpowsour.2005.10.046
  • Rodrigues LEOC, Mansur MB. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries. J Power Sources. 2010;195:3735–3741. doi:10.1016/j.jpowsour.2009.12.071
  • Jha MK, Choubey PK, Dinkar OS, et al. Recovery of rare earth metals (REMs) from nickel metal hydride batteries of electric vehicles. Minerals. 2022;12:1–11. doi:10.3390/min12010034
  • Lie J, Liu JC. Selective recovery of rare earth elements (REEs) from spent NiMH batteries by two-stage acid leaching. Journal of Environmental Chemical Engineering. 2021;9(5):1–8. doi:10.1016/j.jece.2021.106084
  • Ahn NK, Swain B, Shim HW, et al. Recovery of rare earth oxide from waste NiMH batteries by simple wet chemical valorization process. Metals (Basel). 2019;9(11):1–13. doi:10.3390/met9111151
  • Fortier N, Brainard L, Gambogi J, McCullough J. Draft critical mineral list—Summary of methodology and background information—U.S. Geological Survey technical input document in response to Secretarial Order No. 3359 (Open-File Report No. 2018–1021), Usgs numbered series. U.S. geological survey, Reston, VA; 2018.
  • Bobb, S, Carrara S, Huisman J, Mathieux F, Pavel C. Critical Raw Materials for Strategic Technologies and Sectors in the EU – A Foresight Study; 2020. doi:10.2873/58081
  • Zhang J, Zhao B, Schreiner B. Separation hydrometallurgy of rare earth elements. Cham, Switzerland: Springer International Publishing; 2016, 259. doi:10.1007/978-3-319-28235-0
  • Blazy P, Jdid EA. Métallurgie Extractive - Pyrométallurgie. Techniques de l’Ingénieur, Traité Matériaux Métalliques, Matériaux | Élaboration et Recyclage des Métaux; 1998, 34 p.
  • Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy. 2009;97:158–166. doi:10.1016/j.hydromet.2009.02.008
  • Rizet L, Charpentier PE. Métallurgie extractive – Hydrométallurgie. Techniques de l’Ingénieur, Traité Matériaux Métalliques, Matériaux | Élaboration et Recyclage des Métaux; 2000, 18 p.
  • Pradhan S, Nayak R, Mishra S. A review on the recovery of metal values from spent nickel metal hydride and lithium-ion batteries. Int J Environ Sci Technol. 2022;19(10):4537–4554. doi:10.1007/s13762-021-03356-5
  • Zhang P, Yokoyama T, Itabashi O, et al. Recovery of metal values from spent nickel–metal hydride rechargeable batteries. J Power Sources. 1999;77:116–122. doi:10.1016/S0378-7753(98)00182-7
  • Zhang P, Yokoyama T, Itabashi O, et al. Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries. Hydrometallurgy. 1998;50:61–75. doi:10.1016/S0304-386X(98)00046-2
  • Innocenzi V, Vegliò F. Recovery of rare earths and base metals from spent nickel-metal hydride batteries by sequential sulphuric acid leaching and selective precipitations. J Power Sources. 2012;211:184–191. doi:10.1016/j.jpowsour.2012.03.064
  • Pietrelli L, Bellomo B, Fontana D, et al. Rare earths recovery from NiMH spent batteries. Hydrometallurgy. 2002;66:135–139. doi:10.1016/S0304-386X(02)00107-X
  • Bertuol DA, Bernardes AM, Tenório JAS. Spent NiMH batteries—The role of selective precipitation in the recovery of valuable metals. J Power Sources. 2009;193:914–923. doi:10.1016/j.jpowsour.2009.05.014
  • CEAEQ. Détermination des métaux et du phosphore assimilables : Méthode par spectrométrie de masse à source ionisante au plasma d’argon. Centre d'expertise en analyse environnementale du Québec, Québec, QC, Canada; 2014.
  • Karmoker JR, Hasan I, Ahmed N, et al. Development and optimization of Acyclovir loaded mucoadhesive microspheres by Box – Behnken design. Dhaka Univ J Pharmaceut Sci. 2019;18:1–12. doi:10.3329/dujps.v18i1.41421
  • Aslan N, Cebeci Y. Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel. 2007;86:90–97. doi:10.1016/j.fuel.2006.06.010
  • NIST/SEMATECH. e-handbook of statistical methods; 2003. doi:10.18434/M32189
  • Mantuano DP, Dorella G, Elias RCA, et al. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. J Power Sources. 2006;159:1510–1518. doi:10.1016/j.jpowsour.2005.12.056
  • Porvali A, Wilson BP, Lundström M. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate. Waste Manage. 2018;71:381–389. doi:10.1016/j.wasman.2017.10.031
  • IRDP. Erreur standard (ou erreur type) de la mesure. Institut de Recherche et de Documentation Pédagogique; 2016. https://www.irdp.ch/institut/erreur-standard-erreur-type-mesure-2096.html
  • Arumbu P, Srinivasalu S. Sustainable model for high signal to noise ratio to measure underwater acoustic signal using acoustic Doppler velocimeter. Comput Electr Eng. 2018;68:262–270. doi:10.1016/j.compeleceng.2018.03.034
  • Li L, Xu S, Ju Z, et al. Recovery of Ni, Co and rare earths from spent Ni–metal hydride batteries and preparation of spherical Ni(OH)2. Hydrometallurgy. 2009;100:41–46. doi:10.1016/j.hydromet.2009.09.012
  • Chen S, Zhao L, Wang M, et al. Effects of iron and temperature on solubility of light rare earth sulfates in multicomponent system of Fe2(SO4)3-H3PO4-H2SO4 synthetic solution. J Rare Earths. 2020;38:1243–1250. doi:10.1016/j.jre.2019.11.014
  • Yang X, Zhang J, Fang X. Rare earth element recycling from waste nickel-metal hydride batteries. J Hazard Mater. 2014;279:384–388. doi:10.1016/j.jhazmat.2014.07.027
  • Rajeswari B, Amirthagadeswaran KS. Study of machinability and parametric optimization of end milling on aluminium hybrid composites using multi-objective genetic algorithm. J Brazil Soc Mech Sci Eng. 2018;40:1–15. doi:10.1007/s40430-018-1293-3
  • Meshram P, Pandey BD, Mankhand TR. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries. Waste Manage 2016;51:196–203. doi:10.1016/j.wasman.2015.12.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.