343
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of zero‐valent iron as a permeable reactive barrier for long‐term removal of arsenic compounds from synthetic water

, , , , &
Pages 1425-1434 | Received 25 Nov 2008, Accepted 15 Jul 2009, Published online: 17 Nov 2009

References

  • Saha , J.C. , Dikshit , A.K. , Bandopadhyay , M. and Saha , K.C. 1999 . A review of arsenic poisoning and its effects on human health . Crit. Rev. Environ. Sci. Technol. , 29 : 281 – 313 .
  • Chen , S.L. , Dzeng , S.R. , Yang , M.H. , Chiu , K.H. , Shieh , G.M. and Wai , C.M. 1994 . Arsenic species in ground waters of the black foot disease area, Taiwan . Environ. Sci. Technol. , 28 : 877 – 881 .
  • Mandal , B. 1997 . Chronic arsenic toxicity in West Bengal . Curr. Sci. , 72 : 917 – 924 .
  • Nickson , R. , McArthur , J. , Burgess , W. , Ahmed , K.M. , Ravenscroft , P. and Rahman , M. 1998 . Arsenic poisoning of Bangladesh groundwater . Nature , 395 : 338
  • Nordstrom , D.K. 2002 . Worldwide occurrence of arsenic in groundwater . Science , 296 : 2143 – 2145 .
  • Zhang , H. , Ma , D. and Hu , X. 2002 . Arsenic pollution in groundwater from Hetao Area, China . Environ. Geol. , 41 : 638 – 643 .
  • Amini , M. , Abbaspour , K.C. , Berg , M. , Winkel , L. , Hug , S.J. , Hoehn , E. , Yang , H. and Johnson , C.A. 2008 . Statistical modeling of global geogenic arsenic contamination in groundwater . Environ. Sci. Technol. , 42 : 3669 – 3675 .
  • U.S. EPA . 2001 . National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring . Fed. Regist. , 66 : 6976 – 7066 .
  • Ferguson , F.J. and Garvis , J. 1972 . Review of arsenic cycle in natural waters . Water Res. , 6 : 1259 – 1274 .
  • Nriagu , J.O. 1994 . Arsenic in the Environment, Part I: Cycling and Characterization , New York : John Wiley .
  • US EPA . 2000 . “ Technologies and costs for removal of arsenic from drinking water ” . Washington, D.C. : US Environmental Protection Agency . EPA 815‐R‐00‐028
  • Scherer , M.M. , Richter , S. , Valentine , R.L. and Alvarez , P.J.J. 2000 . Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up . Crit. Rev. Environ. Sci. Technol. , 30 : 363 – 411 .
  • Alowitz , M.J. and Scherer , M.M. 2002 . Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal . Environ. Sci. Technol. , 36 : 299 – 306 .
  • Oh , S.Y. , Cha , D.K. and Chiu , P.C. 2002 . Graphite mediated reduction of 2,4‐dinitrotoluene with elemental iron . Environ. Sci. Technol. , 36 : 2178 – 2184 .
  • Zhang , W.X. 2003 . Nano scale iron particles for environmental remediation: An overview . J. Nanopart. Res. , 5 : 323 – 332 .
  • Cundy , A.B. , Hopkinson , L. and Whitby , R.L.D. 2008 . Use of iron‐based technologies in contaminated land and groundwater remediation: A review . Sci. Total. Environ. , 400 : 42 – 51 .
  • Gandhi , S. , Oh , B.‐T. , Schnoor , J.L. and Alvarez , P.J.J. 2002 . Degradation of TCE, Cr(VI), sulfate and nitrate mixtures by granular iron in flow‐through columns under different microbial conditions . Water Res. , 36 : 1973 – 1982 .
  • Phillips , H.D. , Gu , B. , Watson , D.B. , Roh , Y. , Liang , L. and Lee , S.Y. 2000 . Performance evaluation of zerovalent iron reactive barrier: Mineralogical characteristics . Environ. Sci. Technol. , 34 : 4169 – 4176 .
  • Lackovic , J.A. , Nikolaidis , N.P. and Dobbs , G.M. 2000 . Inorganic arsenic removal by zero‐valent iron . Environ. Eng. Sci. , 17 : 29 – 39 .
  • Farrell , J. , Wang , J. , O‐Day , P. and Conklin , M. 2001 . Electrochemical and spectroscopic study of arsenate removal from water using zero‐valent iron media . Environ. Sci. Technol. , 35 : 2026 – 2032 .
  • Su , C. and Puls , R.W. 2001 . Arsenate and arsenite removal by zero valent iron: Kinetics, redox, transformation, and implications for in situ groundwater remediation . Environ. Sci. Technol. , 35 : 1487 – 1492 .
  • Melitas , N. , Wang , J. , Conklin , M. , O’Day , P. and Farrell , J. 2002 . Understanding soluble arsenate removal kinetics by zerovalent iron media . Environ. Sci. Technol. , 36 : 2074 – 2081 .
  • Manning , B.A. , Hunt , M. , Amrhein , C. and Yarmoff , J.A. 2002 . Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products . Environ. Sci. Technol. , 36 : 5455 – 5461 .
  • Ahn , J.S. , Chon , C.M. , Moon , H.S. and Kim , K.W. 2003 . Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems . Water Res. , 37 : 2478 – 2488 .
  • Lien , H.L. and Wilkin , R.T. 2005 . High‐level arsenite removal from groundwater by zero valent iron . Chemosphere , 59 : 377 – 386 .
  • Bang , S. , Johnson , M.D. , Korfiatis , P.G. and Meng , X. 2005 . Chemical reactions between arsenic and zero‐valent iron in water . Water Res. , 39 : 763 – 770 .
  • Kober , R. , Welter , E. , Ebert , M. and Dahmke , A. 2005 . Removal of arsenic from ground water by zero‐valent iron and the role of sulfide . Environ. Sci. Technol. , 39 : 8038 – 8044 .
  • Sun , H. , Wang , L. , Zhang , R. , Sui , J. and Xu , G. 2006 . Treatment of groundwater polluted by arsenic compounds by zero valent iron . J. Hazard. Mater. , 129 : 297 – 303 .
  • Katsoyiannis , I.A. , Ruettimann , T. and Hug , S.J. 2008 . pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water . Environ. Sci. Technol. , 42 : 7424 – 7430 .
  • von Gunten , U. and Zobrist , J. 1993 . Biogeochemical changes in groundwater‐infiltration systems: Column studies . Geochim. Cosmochim. Acta. , 57 : 3895 – 3906 .
  • Paige , C.R. , Snodgrass , W.J. , Nicholson , R.V. and Scharer , J.M. 1996 . The crystallization of arsenate‐contaminated iron hydroxide solids at high pH water . Environ. Res. , 68 : 981 – 987 .
  • Morrison , S.J. , Metzler , D.R. and Dwyer , B.P. 2002 . Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero‐valent iron in a passive treatment cell: Reaction progress modeling . J. Contam. Hydrol. , 56 : 99 – 116 .
  • Vink , W.B. 1996 . Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams . Chem. Geol. , 130 : 21 – 30 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.