758
Views
5
CrossRef citations to date
0
Altmetric
Articles

An ecologically valid examination of event-based and time-based prospective memory using immersive virtual reality: The influence of attention, memory, and executive function processes on real-world prospective memory

ORCID Icon & ORCID Icon
Pages 255-280 | Received 16 Feb 2021, Accepted 16 Nov 2021, Published online: 02 Dec 2021

References

  • Anderson, F.T., McDaniel, M.A., & Einstein, G.O. (2017). Remembering to remember: An examination of the cognitive processes underlying prospective memory. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference 2E (pp. 451–463). Oxford, UK: Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.21049-3
  • Azzopardi, B., Auffray, C., & Kermarrec, C. (2017). Paradoxical effect of aging on laboratory and naturalistic time-based prospective memory tasks. Role of executive functions. Canadian Journal on Aging/La Revue Canadienne du Vieillissement, 36(1), 30–40. https://doi.org/10.1017/s0714980816000738
  • Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752–762. https://doi.org/10.1038/nrn3122
  • Borrego, A., Latorre, J., Alcañiz, M., & Llorens, R. (2018). Comparison of oculus rift and HTC vive: Feasibility for virtual reality-based exploration, navigation, exergaming, and rehabilitation. Games for Health Journal, 7(3), 151–156. https://doi.org/10.1089/g4 h.2017.0114
  • Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181–197. https://doi.org/10.1023/B:NERV.0000009483.91468.fb
  • Cona, G., Arcara, G., Tarantino, V., & Bisiacchi, P. S. (2012). Electrophysiological correlates of strategic monitoring in event-based and time-based prospective memory. PLoS One, 7(2), e31659. https://doi.org/10.1371/journal.pone.0031659
  • Costa, A., Caltagirone, C., & Carlesimo, G. A. (2011). Prospective memory impairment in mild cognitive impairment: An analytical review. Neuropsychology Review, 21(4), 390–404. https://doi.org/10.1007/s11065-011-9172-z
  • Einstein, G. O., & McDaniel, M. A. (1996). Retrieval processes in prospective memory: Theoretical approaches and some new empirical findings. In M. Brandimonte, G. O. Einstein, & M. A. McDaniel (Eds.), Prospective memory: Theory and applications (pp. 115–141). Lawrence Erlbaum Associates. https://psycnet.apa.org/record/2002-02930-005
  • Einstein, G. O., McDaniel, M. A., Manzi, M., Cochran, B., & Baker, M. (2000). Prospective memory and aging: Forgetting intentions over short delays. Psychology and Aging, 15(4), 671–683. https://doi.org/10.1037/0882-7974.15.4.671
  • Einstein, G. O., Smith, R. E., McDaniel, M. A., & Shaw, P. ( 1997). Aging and prospective memory: The influence of increased task demands at encoding and retrieval. Psychology and Aging, 12(3), 479–488. https://doi.org/10.1037//0882-7974.12.3.479.
  • Fox, J., & Weisberg, S. (2019). An {R} Companion to applied regression, third edition. Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
  • Frankland, P. W., Josselyn, S. A., & Köhler, S. (2019). The neurobiological foundation of memory retrieval. Nature Neuroscience, 22(10), 1576–1585. https://doi.org/10.1038/s41593-019-0493-1
  • Franzen, M. D., & Wilhelm, K. L. (1996). Conceptual foundations of ecological validity in neuropsychological assessment. In R. J. Sbordone, & C. J. Long (Eds.), Ecological validity of neuropsychological testing (pp. 91–112). Gr Press/St Lucie Press, Inc. https://psycnet.apa.org/record/1996-98718-005
  • Garden, S., Phillips, L. H., & MacPherson, S. E. (2001). Mid-life aging, open-ended planning, and laboratory measures of executive function. Neuropsychology, 15(4), 472–482. https://doi.org/10.1037/0894-4105.15.4.472
  • Glickson, J., & Myslobodsky, M. (2006). Timing the future: The case of time-based prospective memory. World Scientific Publishing. https://doi.org/10.1142/5937
  • Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54(7), 493–503. https://doi.org/10.1037/0003-066X.54.7.493.
  • Gonneaud, J., Kalpouzos, G., Bon, L., Viader, F., Eustache, F., & Desgranges, B. (2011). Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing. Memory (Hove, England), 19(4), 360–377. https://doi.org/10.1080/09658211.2011.570765
  • Haines, S., Shelton, J., Henry, J., Terrett, G., Vorwerk, T., & Rendell, P. (2019, February). Prospective Memory and Cognitive Aging. Oxford Research Encyclopedia of Psychology. Retrieved 7 Dec. 2019, from https://oxfordre.com/psychology/view/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-381
  • Higginson, C. I., Arnett, P. A., & Voss, W. D. (2000). The ecological validity of clinical tests of memory and attention in multiple sclerosis. Archives of Clinical Neuropsychology, 15(3), 185–204. https://doi.org/10.1016/S0887-6177(99)00004-9
  • Huppert, F. A., Johnson, T., & Nickson, J. (2000). High prevalence of prospective memory impairment in the elderly and in early-stage dementia: Findings from a population-based study. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 14(7), S63–S81. https://doi.org/10.1002/acp.771
  • Jones, S., Livner, Å, & Bäckman, L. (2006). Patterns of prospective and retrospective memory impairment in preclinical Alzheimer's disease. Neuropsychology, 20(2), 144–152. https://doi.org/10.1037/0894-4105.20.2.144.
  • Kliegel, M., Altgassen, M., Hering, A., & Rose, N. S. (2011). A process-model based approach to prospective memory impairment in Parkinson's disease. Neuropsychologia, 49(8), 2166–2177. https://doi.org/10.1016/j.neuropsychologia.2011.01.024
  • Kliegel, M., Martin, M., McDaniel, M. A., & Einstein, G. O. (2001). Varying the importance of a prospective memory task: Differential effects across time-and event-based prospective memory. Memory (Hove, England), 9(1), 1–11. https://doi.org/10.1080/09658210042000003
  • Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2019a). Technological competence is a precondition for effective implementation of virtual reality head mounted displays in human neuroscience: A technological review and meta-analysis. Frontiers in Human Neuroscience, 13, 342. https://doi.org/10.3389/fnhum.2019.00342
  • Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2019b). Validation of the Virtual Reality Neuroscience Questionnaire: Maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology. Frontiers in Human Neuroscience, 13, 417. https://doi.org/10.3389/fnhum.2019.00417
  • Kourtesis, P., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2021). Validation of the Virtual Reality Everyday Assessment Lab (VR-EAL): an immersive virtual reality neuropsychological battery with enhanced ecological validity. Journal of the International Neuropsychological Society, 27(2), 181–196. https://doi.org/10.1017/S1355617720000764
  • Kourtesis, P., Korre, D., Collina, S., Doumas, L. A. A., & MacPherson, S. E. (2020). Guidelines for the development of immersive virtual reality software for cognitive neuroscience and neuropsychology: The development of Virtual Reality Everyday Assessment Lab (VR-EAL), a neuropsychological test battery in immersive virtual reality. Frontiers in Computer Science, 1, 12. https://doi.org/10.3389/fcomp.2019.00012
  • Kvavilashvili, L., Cockburn, J., & Kornbrot, D. E. (2013). Prospective memory and ageing paradox with event-based tasks: A study of young, young-old, and old-old participants. Quarterly Journal of Experimental Psychology, 66(5), 864–875. https://doi.org/10.1080/17470218.2012.721379
  • Liu, L. L., & Park, D. C. (2004). Aging and medical adherence: The use of automatic processes to achieve effortful things. Psychology and Aging, 19(2), 318–325. https://doi.org/10.1037/0882-7974.19.2.318
  • Mackinlay, R. J., Kliegel, M., & Mäntylä, T. (2009). Predictors of time-based prospective memory in children. Journal of Experimental Child Psychology, 102(3), 251–264. https://doi.org/10.1016/j.jecp.2008.08.006
  • Marsh, R. L., Hicks, J. L., & Cook, G. I. (2008). On beginning to understand the role of context in prospective memory. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 77–100). Taylor & Francis Group/Lawrence Erlbaum Associates. https://psycnet.apa.org/record/2007-15727-004
  • Marsh, R. L., Hicks, J. L., & Landau, J. D. (1998). An investigation of everyday prospective memory. Memory & Cognition, 26(4), 633–643. https://doi.org/10.3758/BF03211383
  • Maylor, E. A. (2008). Commentary: Prospective memory through the ages. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 217–233). Taylor & Francis Group/Lawrence Erlbaum Associates. https://psycnet.apa.org/record/2007-15727-010
  • McDaniel, M A, & Einstein, G O. (2007). Prospective memory: An overview and synthesis of an emerging field. Sage Publications, Inc.
  • McDaniel, M. A., & Scullin, M. K. (2010). Implementation intention encoding does not automatize prospective memory responding. Memory & Cognition, 38(2), 221–232. https://doi.org/10.3758/MC.38.2.221
  • McDaniel, Mark A, & Einstein, Gilles O.. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14(7), S127–S144. https://doi.org/10.1002/(ISSN)1099-0720
  • McFarland, C. P., & Glisky, E. L. (2009). Frontal lobe involvement in a task of time-based prospective memory. Neuropsychologia, 47(7), 1660–1669. https://doi.org/10.1016/j.neuropsychologia.2009.02.023
  • Milne, Sarah, Orbell, Sheina, & Sheeran, Paschal. (2002). Combining motivational and volitional interventions to promote exercise participation: Protection motivation theory and implementation intentions. British Journal of Health Psychology, 7(2), 163–184. https://doi.org/10.1348/135910702169420
  • Mioni, G., & Stablum, F. (2014). Monitoring behaviour in a time-based prospective memory task: The involvement of executive functions and time perception. Memory (Hove, England), 22(5), 536–552. https://doi.org/10.1080/09658211.2013.801987
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
  • Mlinac, M. E., & Feng, M. C. (2016). Assessment of activities of daily living, self-care, and independence. Archives of Clinical Neuropsychology, 31(6), 506–516. https://doi.org/10.1093/arclin/acw049
  • Morris, R., & Ward, G. (2004). The cognitive psychology of planning. Psychology Press. https://doi.org/10.4324/9780203493564
  • Mullet, H. G., Scullin, M. K., Hess, T. J., Scullin, R. B., Arnold, K. M., & Einstein, G. O. (2013). Prospective memory and aging: Evidence for preserved spontaneous retrieval with exact but not related cues. Psychology and Aging, 28(4), 910–922. https://doi.org/10.1037/a0034347.
  • Niedźwieńska, A., & Barzykowski, K. (2012). The age prospective memory paradox within the same sample in time-based and event-based tasks. Aging, Neuropsychology, and Cognition, 19(1-2), 58–83. https://doi.org/10.1080/13825585.2011.628374
  • Parsons, T. D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660. https://doi.org/10.3389/fnhum.2015.00660.
  • Parsons, T. D., McMahan, T., & Kane, R. (2018). Practice parameters facilitating adoption of advanced technologies for enhancing neuropsychological assessment paradigms. The Clinical Neuropsychologist, 32(1), 16–41. https://doi.org/10.1080/13854046.2017.1337932
  • Patil, I. (2018). ggstatsplot: ‘ggplot2’ Based Plots with Statistical Details. CRAN. https://cran.r-project.org/web/packages/ggstatsplot/index.html
  • Phillips, L. H., Henry, J. D., & Martin, M. (2008). Adult aging and prospective memory: The importance of ecological validity. In M. Kliegel, M. A. McDaniel, & G. O. Einstein (Eds.), Prospective memory: Cognitive, neuroscience, developmental, and applied perspectives (pp. 161–185). Taylor & Francis Group/Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203809945
  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  • Rizzo, A. A., Schultheis, M., Kerns, K. A., & Mateer, C. (2004). Analysis of assets for virtual reality applications in neuropsychology. Neuropsychological Rehabilitation, 14(1-2), 207–239. https://doi.org/10.1080/09602010343000183
  • Robertson, I. H., Ward, T., Ridgeway, V., & Nimmo-Smith, I. (1994). The test of everyday attention (TEA). Thames Valley Test Company, 197–221.
  • RStudio Team. (2020). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/
  • Scullin, M. K., McDaniel, M. A., Shelton, J. T., & Lee, J. H. (2010). Focal/nonfocal cue effects in prospective memory: Monitoring difficulty or different retrieval processes? Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(3), 736–749. https://doi.org/10.1037/a0018971.
  • Shallice, T., & Burgess, P. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114(2), 727–741. https://doi.org/10.1093/brain/114.2.727
  • Shelton, Jill Talley, & Scullin, Michael K. (2017). The Dynamic Interplay Between Bottom-Up and Top-Down Processes Supporting Prospective Remembering. Current Directions in Psychological Science, 26(4), 352–358. http://dx.doi.org/10.1177/0963721417700504
  • Sheppard, D. P., Bruineberg, J. P., Kretschmer-Trendowicz, A., & Altgassen, M. (2018). Prospective memory in autism: Theory and literature review. The Clinical Neuropsychologist, 32(5), 748–782. https://doi.org/10.1080/13854046.2018.1435823
  • Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74. https://doi.org/10.3389/frobt.2016.00074
  • Smith, Rebekah E, & Bayen, Ute J.. (2004). A Multinomial Model of Event-Based Prospective Memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 756–777. https://doi.org/10.1037/0278-7393.30.4.756
  • Smith, Rebekah E, Hunt, R. Reed, McVay, Jennifer C, & McConnell, Melissa D.. (2007). The cost of event-based prospective memory: Salient target events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 734–746. https://doi.org/10.1037/0278-7393.33.4.734
  • Spooner, D. M., & Pachana, N. A. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327–337. https://doi.org/10.1016/j.acn.2006.04.004
  • Teo, W. P., Muthalib, M., Yamin, S., Hendy, A. M., Bramstedt, K., Kotsopoulos, E., … Ayaz, H. (2016). Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation? –A Narrative Review of the Literature. Frontiers in Human Neuroscience, 10, 284. https://doi.org/10.3389/fnhum.2016.00284
  • Tulving, E. (1983). Elements of episodic memory. Oxford University Press. https://doi.org/10.1017/S0033291700015361
  • Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. https://doi.org/10.1037/h0020071.
  • Uttl, B. (2008). Transparent meta-analysis of prospective memory and aging. PloS one, 3(2), e1568. https://doi.org/10.1371/journal.pone.0001568
  • Vanneste, S., Baudouin, A., Bouazzaoui, B., & Taconnat, L. (2016). Age-related differences in time-based prospective memory: The role of time estimation in the clock monitoring strategy. Memory (Hove, England), 24(6), 812–825. https://doi.org/10.1080/09658211.2015.1054837
  • Werner, Perla, & Korczyn, Amos D. (2012). Willingness to Use Computerized Systems for the Diagnosis of Dementia. Alzheimer Disease & Associated Disorders, 26(2), 171–178. https://doi.org/10.1097/WAD.0b013e318222323e
  • Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H., & Evans, J. J. (1996). Behavioural Assessment of the Dysexecutive Syndrome (BADS). Thames Valley Test Company.
  • Wilson, B. A., Cockburn, J., & Baddeley, A. (2008). The Rivermead behavioural memory test. Bury St edmunds. Thames Valley Test Company.
  • Wilson, B. A., Evans, J. J., Emslie, H., Foley, J., Shiel, A., Watson, P., Hawkins, K., & Groot, Y. (2005). The Cambridge prospective memory test: CAMPROMPT. Harcourt Assessment.
  • Xue, G. (2018). The neural representations underlying human episodic memory. Trends in Cognitive Sciences, 22(6), 544–561. https://doi.org/10.1016/j.tics.2018.03.004
  • Zaidi, S. F. M., Duthie, C., Carr, E., & Maksoud, S. H. A. E. (2018, December). Conceptual framework for the usability evaluation of gamified virtual reality environment for non-gamers. Proceedings of the 16th ACM SIGGRAPH International conference on virtual-reality continuum and its applications in industry (p. 13). December 2-3, 2018. ACM. https://doi.org/10.1145/3284398.3284431.
  • Zuber, S., Kliegel, M., & Ihle, A. (2016). An individual difference perspective on focal versus nonfocal prospective memory. Memory & Cognition, 44(8), 1192–1203. https://doi.org/10.3758/s13421-016-0628-5
  • Zuber, S., Mahy, C. E., & Kliegel, M. (2019). How executive functions are associated with event-based and time-based prospective memory during childhood. Cognitive Development, 50, 66–79. https://doi.org/10.1016/j.cogdev.2019.03.001
  • Zygouris, S., & Tsolaki, M. (2015). Computerized cognitive testing for older adults: A review. American Journal of Alzheimer's Disease & Other Dementias®, 30(1), 13–28. https://doi.org/10.1177/1533317514522852

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.