1,830
Views
3
CrossRef citations to date
0
Altmetric
Articles

Neurocognitive deficits in COVID-19 patients five months after discharge from hospital

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1599-1623 | Received 22 Feb 2022, Accepted 11 Sep 2022, Published online: 14 Oct 2022

References

  • Abboud, H., Abboud, F. Z., Kharbouch, H., Arkha, Y., El Abbadi, N., & El Ouahabi, A. (2020). COVID-19 and SARS-Cov-2 infection: Pathophysiology and clinical effects on the nervous system. World Neurosurgery, 140, 49–53. https://doi.org/10.1016/j.wneu.2020.05.193
  • Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., & Krupinski, J. (2020). Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behavior, & Immunity – Health, 9, 100163. https://doi.org/10.1016/j.bbih.2020.100163
  • Alnefeesi, Y., Siegel, A., Lui, L. M. W., Teopiz, K. M., Ho, R. C. M., Lee, Y., & McIntyre, R. S. (2021). Impact of SARS-CoV-2 infection on cognitive function: A systematic review. Frontiers in Psychiatry, 11, 621773. https://doi.org/10.3389/fpsyt.2020.621773
  • Banerjee, D., & Viswanath, B. (2020). Neuropsychiatric manifestations of COVID-19 and possible pathogenic mechanisms: Insights from other coronaviruses. Asian Journal of Psychiatry, 54, 102350. https://doi.org/10.1016/j.ajp.2020.102350
  • Beatty, W. W., Mold, J. W., & Gontkovsky, S. T. (2003). RBANS performance: Influences of sex and education. Journal of Clinical and Experimental Neuropsychology, 25(8), 1065–1069. https://doi.org/10.1076/jcen.25.8.1065.16732
  • Brooks, B. L., Holdnack, J. A., & Iverson, G. L. (2011). Advanced clinical interpretation of the WAIS-IV and WMS-IV: Prevalence of low scores varies by level of intelligence and years of education. Assessment, 18(2), 156–167. https://doi.org/10.1177/1073191110385316
  • Brück, E., Larsson, J. W., Lasselin, J., Bottai, M., Hirvikoski, T., Sundman, E., & Olofsson, P. S. (2019). Lack of clinically relevant correlation between subjective and objective cognitive function in ICU survivors: A prospective 12-month follow-up study. Critical Care, 23(1), 253. https://doi.org/10.1186/s13054-019-2527-1
  • Casas, R., Guzmán-Vélez, E., Cardona-Rodriguez, J., Rodriguez, N., Quiñones, G., Izaguirre, B., & Tranel, D. (2012). Interpreter-mediated neuropsychological testing of monolingual Spanish speakers. The Clinical Neuropsychologist, 26(1), 88–101. https://doi.org/10.1080/13854046.2011.640641
  • Ceban, F., Ling, S., Lui, L. M. W., Lee, Y., Gill, H., Teopiz, K. M., & McIntyre, R. S. (2022). Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 101, 93–135. https://doi.org/10.1016/j.bbi.2021.12.020
  • Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201–216. https://doi.org/10.1016/j.acn.2007.08.010
  • Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. The Lancet, 381(9868), 752–762. https://doi.org/10.1016/S0140-6736(12)62167-9
  • Daroische, R., Hemminghyth, M. S., Eilertsen, T. H., Breitve, M. H., & Chwiszczuk, L. J. (2021). Cognitive impairment after COVID-19—A review on objective test data. Frontiers in Neurology, 12, 699582–699582. https://doi.org/10.3389/fneur.2021.699582
  • de Azevedo, J. R. A., Montenegro, W. S., Rodrigues, D. P., de Souza, S. C., Araujo, V. F. S., de Paula, M. P., & Mendonça, A. V. N. (2017). Long-term cognitive outcomes among unselected ventilated and non-ventilated ICU patients. Journal of Intensive Care, 5(1), 18–18. https://doi.org/10.1186/s40560-017-0213-4
  • Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis – Kaplan executive function system: Examiners manual. Psychological Corporation.
  • Divanoglou, A., Samuelsson, A. P. K., Sjödahl, P. E. R., Andersson, C., & Levi, P. R. (2021). Rehabilitation needs and mortality associated with the COVID-19 pandemic: A population-based study of all hospitalised and home-healthcare individuals in a Swedish healthcare region. EClinicalMedicine, 36, 100920. https://doi.org/10.1016/j.eclinm.2021.100920
  • Duff, K., Hobson, V. L., Beglinger, L. J., & O’Bryant, S. E. (2010). Diagnostic accuracy of the RBANS in mild cognitive impairment: Limitations on assessing milder impairments. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 25(5), 429–441. https://doi.org/10.1093/arclin/acq045
  • Duff, K., Patton, D., Schoenberg, M. R., Mold, J., Scott, J. G., & Adams, R. L. (2003). Age- and education-corrected independent normative data for the RBANS in a community dwelling elderly sample. The Clinical Neuropsychologist, 17(3), 351–366. https://doi.org/10.1076/clin.17.3.351.18082
  • Edmonds, E. C., Delano-Wood, L., Galasko, D. R., Salmon, D. P., & Bondi, M. W. (2014). Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. Journal of the International Neuropsychological Society, 20(8), 836–847. https://doi.org/10.1017/S135561771400068X
  • Ferrucci, R., Dini, M., Groppo, E., Rosci, C., Reitano, M. R., Bai, F., & Priori, A. (2021). Long-Lasting cognitive abnormalities after COVID-19. Brain Sciences, 11(2), 235. https://doi.org/10.3390/brainsci11020235
  • Gontkovsky, S. T., Mold, J. W., & Beatty, W. W. (2002). Age and educational influences on RBANS index scores in a nondemented geriatric sample. The Clinical Neuropsychologist, 16(3), 258–263. https://doi.org/10.1076/clin.16.3.258.13844
  • Hagelin, C. L., Wengström, Y., Runesdotter, S., & Fürst, C. J. (2007). The psychometric properties of the Swedish multidimensional fatigue inventory MFI-20 in four different populations. Acta Oncologica, 46(1), 97–104. https://doi.org/10.1080/02841860601009430
  • Hellgren, L., Birberg Thornberg, U., Samuelsson, K., Levi, R., Divanoglou, A., & Blystad, I. (2021). Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: An observational cohort study. BMJ Open, 11(10), e055164. https://doi.org/10.1136/bmjopen-2021-055164
  • Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., & Meziani, F. (2020). Neurologic features in severe SARS-CoV-2 infection. New England Journal of Medicine, 382(23), 2268–2270. https://doi.org/10.1056/NEJMc2008597
  • Hinz, A., Fleischer, M., Brähler, E., Wirtz, H., & Bosse-Henck, A. (2011). Fatigue in patients with sarcoidosis, compared with the general population. General Hospital Psychiatry, 33(5), 462–468. https://doi.org/10.1016/j.genhosppsych.2011.05.009
  • Honarmand, K., Lalli, R. S., Priestap, F., Chen, J. L., McIntyre, C. W., Owen, A. M., & Slessarev, M. (2020). Natural history of cognitive impairment in critical illness survivors. A systematic review. American Journal of Respiratory and Critical Care Medicine, 202(2), 193–201. https://doi.org/10.1164/rccm.201904-0816CI
  • Hopkins, R. O., & Jackson, J. C. (2006). Long-term neurocognitive function after critical illness. Chest, 130(3), 869–878. https://doi.org/10.1378/chest.130.3.869
  • Jaywant, A., Vanderlind, W. M., Alexopoulos, G. S., Fridman, C. B., Perlis, R. H., & Gunning, F. M. (2021). Frequency and profile of objective cognitive deficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacology, 46(13), 2235–2240. https://doi.org/10.1038/s41386-021-00978-8
  • Johansson, J., Levi, R., Jakobsson, M., Gunnarsson, S., & Samuelsson, K. (2022). Multi-professional neurorehabilitation after COVID-19 infection should include assessment of visual function: Visual function after COVID-19 infection. Archives of Rehabilitation Research and Clinical Translation, 4, 100184. https://doi.org/10.1016/j.arrct.2022.100184
  • Karantzoulis, S., Novitski, J., Gold, M., & Randolph, C. (2013). The repeatable battery for the assessment of neuropsychological status (RBANS): utility in detection and characterization of mild cognitive impairment due to Alzheimer’s disease. Archives of Clinical Neuropsychology, 28(8), 837–844. https://doi.org/10.1093/arclin/act057
  • Kumar, S., Veldhuis, A., & Malhotra, T. (2021). Neuropsychiatric and cognitive sequelae of COVID-19. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.577529
  • Larson, E., Kirschner, K., Bode, R., Heinemann, A., & Goodman, R. (2005). Construct and predictive validity of the repeatable battery for the assessment of neuropsychological status in the evaluation of stroke patients. Journal of Clinical and Experimental Neuropsychology, 27(1), 16–32. https://doi.org/10.1080/138033990513564
  • Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., & Hu, B. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology, 77(6), 683–690. https://doi.org/10.1001/jamaneurol.2020.1127
  • Marshall, J. C., Murthy, S., Diaz, J., Cheng, A., Denholm, J., Hodgson, C., & Clinical, W. H. O. W. G. (2020). A minimal common outcome measure set for COVID-19 clinical research. The Lancet Infectious Diseases, 20(8), E192–E197. https://doi.org/10.1016/S1473-3099(20)30483-7
  • Mazza, M. G., Palladini, M., De Lorenzo, R., Magnaghi, C., Poletti, S., Furlan, R., Ciceri, F., Rovere-Querini, P., & Benedetti, F. (2021). Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain, Behavior, and Immunity, 94, 138–147. https://doi.org/10.1016/j.bbi.2021.02.021
  • Mishra, V., Seyedzenouzi, G., Almohtadi, A., Chowdhury, T., Khashkhusha, A., Axiaq, A., & Harky, A. (2021). Health inequalities during COVID-19 and their effects on morbidity and mortality. Journal of Healthcare Leadership, 13, 19–26. https://doi.org/10.2147/jhl.S270175
  • Miskowiak, K. W., Johnsen, S., Sattler, S. M., Nielsen, S., Kunalan, K., Rungby, J., Lapperre, T., & Porsberg, C. M. (2021). Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. European Neuropsychopharmacology, 46, 39–48. https://doi.org/10.1016/j.euroneuro.2021.03.019
  • Müller, A., von Hofen-Hohloch, J., Mende, M., Saur, D., Fricke, C., Bercker, S., & Classen, J. (2020). Long-term cognitive impairment after ICU treatment: A prospective longitudinal cohort study (Cog-I-CU). Scientific Reports, 10(1), 15518. https://doi.org/10.1038/s41598-020-72109-0
  • Norouzi, M., Miar, P., Norouzi, S., & Nikpour, P. (2021). Nervous system involvement in COVID-19: A review of the current knowledge. Molecular Neurobiology, 58(7), 3561–3574. https://doi.org/10.1007/s12035-021-02347-4
  • Novitski, J., Steele, S., Karantzoulis, S., & Randolph, C. (2012). The repeatable battery for the assessment of neuropsychological status effort scale. Archives of Clinical Neuropsychology, 27(2), 190–195. https://doi.org/10.1093/arclin/acr119
  • Nygård, O. (2022). Pre-Migration status, social capital, and the educational aspirations of children of immigrants in disadvantaged Swedish schools. Scandinavian Journal of Educational Research, 66(4), 580–593. https://doi.org/10.1080/00313831.2021.1897878
  • OECD. (2020). What is the impact of the COVID-19 pandemic on immigrants and their children? https://doi.org/10.1787/e7cbb7de-en
  • Pandharipande, P. P., Girard, T. D., Jackson, J. C., Morandi, A., Thompson, J. L., Pun, B. T., Brummel, N. E., Hughes, C. G., Vasilevskis, E. E., Shintani, A. K., Moons, K. G., Geevarghese, S. K., Canonico, A., Hopkins, R. O., Bernard, G. R., Dittus, R. S., & Ely, E. W. (2013). Long-term cognitive impairment after critical illness. New England Journal of Medicine, 369(14), 1306–1316. https://doi.org/10.1056/NEJMoa1301372
  • Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62(7), 1160–1163. https://doi.org/10.1001/archneur.62.7.1160
  • Ploughman, M., McCarthy, J., Bosse, M., Sullivan, H. J., & Corbett, D. (2008). Does treadmill exercise improve performance of cognitive or upper-extremity tasks in people with chronic stroke? A randomized cross-over trial. Archives of Physical Medicine and Rehabilitation, 89(11), 2041–2047. https://doi.org/10.1016/j.apmr.2008.05.017
  • Rabinovitz, B., Jaywant, A., & Fridman, C. B. (2020). Neuropsychological functioning in severe acute respiratory disorders caused by the coronavirus: Implications for the current COVID-19 pandemic. The Clinical Neuropsychologist, 34(7–8), 1453–1479. https://doi.org/10.1080/13854046.2020.1803408
  • Randolph. (2013). RBANS Repeatable Battery for the Assessment of Nuropsychological status. Manual Svensk version. Pearson Assessment.
  • Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310–319. https://doi.org/10.1076/jcen.20.3.310.823
  • Riordan, P., Stika, M., Goldberg, J., & Drzewiecki, M. (2020). COVID-19 and clinical neuropsychology: A review of neuropsychological literature on acute and chronic pulmonary disease. The Clinical Neuropsychologist, 34(7-8), 1480–1497. https://doi.org/10.1080/13854046.2020.1810325
  • Rockwood, K., Song, X., MacKnight, C., Bergman, H., Hogan, D. B., McDowell, I., & Mitnitski, A. (2005). A global clinical measure of fitness and frailty in elderly people. Canadian Medical Association Journal, 173(5), 489–495. https://doi.org/10.1503/cmaj.050051
  • Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., Zandi, M. S., Lewis, G., & David, A. S. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry, 7(7), 611–627. https://doi.org/10.1016/S2215-0366(20)30203-0
  • Rogers, J. P., Watson, C. J., Badenoch, J., Cross, B., Butler, M., Song, J., & Rooney, A. G. (2021). Neurology and neuropsychiatry of COVID-19: A systematic review andmeta-analysis of the early literature reveals frequent CNS manifestationsand key emerging narratives. Journal of Neurology, Neurosurgery & Psychiatry, jnnp-2021-326405. https://doi.org/10.1136/jnnp-2021-326405
  • Rosselli, M., & Ardila, A. (2003). The impact of culture and education on non-verbal neuropsychological measurements: A critical review. Brain and Cognition, 52(3), 326–333. https://doi.org/10.1016/S0278-2626(03)00170-2
  • Sachdev, P. S., Blacker, D., Blazer, D. G., Ganguli, M., Jeste, D. V., Paulsen, J. S., & Petersen, R. C. (2014). Classifying neurocognitive disorders: The DSM-5 approach. Nature Reviews Neurology, 10(11), 634–642. https://doi.org/10.1038/nrneurol.2014.181
  • Sasannejad, C., Ely, E. W., & Lahiri, S. (2019). Long-term cognitive impairment after acute respiratory distress syndrome: A review of clinical impact and pathophysiological mechanisms. Critical Care, 23(1), 12. https://doi.org/10.1186/s13054-019-2626-z
  • Saykin, A. J., Gur, R. C., Gur, R. E., Shtasel, D. L., Flannery, K. A., Mozley, L. H., Malamut, B. L., Watson, B., & Mozley, P. D. (1995). Normative neuropsychological test performance: Effects of age, education, gender and ethnicity. Applied Neuropsychology, 2(2), 79–88. https://doi.org/10.1207/s15324826an0202_5
  • SCB. (2020). Befolkningsstatistik, Statistiska Central Byrån. http://www.scb.se/be0101. http://www.scb.se/be0101
  • Schmidt, I. W., Berg, I. J., & Deelman, B. G. (2001). Relations between subjective evaluations of memory and objective memory performance. Perceptual and Motor Skills, 93(3), 761–776. https://doi.org/10.2466/pms.2001.93.3.761
  • Schou, T. M., Joca, S., Wegener, G., & Bay-Richter, C. (2021). Psychiatric and neuropsychiatric sequelae of COVID-19 – A systematic review. Brain, Behavior, and Immunity, 97, 328–348. https://doi.org/10.1016/j.bbi.2021.07.018
  • Sheng, B., Wing Cheng, S. K., Lau, K. K., Li, H. L., & Yiu Chan, E. L. (2005). The effects of disease severity, use of corticosteroids and social factors on neuropsychiatric complaints in severe acute respiratory syndrome (SARS) patients at acute and convalescent phases. European Psychiatry, 20(3), 236–242. https://doi.org/10.1016/j.eurpsy.2004.06.023
  • Silverberg, N. D., Wertheimer, J. C., & Fichtenberg, N. L. (2007). An effort index for the repeatable battery for the assessment of neuropsychological status (RBANS). The Clinical Neuropsychologist, 21(5), 841–854. https://doi.org/10.1080/13854040600850958
  • Srisurapanont, M., Suttajit, S., Eurviriyanukul, K., & Varnado, P. (2017). Discrepancy between objective and subjective cognition in adults with major depressive disorder. Scientific Reports, 7(1), 3901. https://doi.org/10.1038/s41598-017-04353-w
  • Svendsen, A. M., Kessing, L. V., Munkholm, K., Vinberg, M., & Miskowiak, K. W. (2012). Is there an association between subjective and objective measures of cognitive function in patients with affective disorders? Nordic Journal of Psychiatry, 66(4), 248–253. https://doi.org/10.3109/08039488.2011.626870
  • Taquet, M., Geddes, J. R., Husain, M., Luciano, S., & Harrison, P. J. (2021). 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. The Lancet Psychiatry, 8(5), 416–427. https://doi.org/10.1016/S2215-0366(21)00084-5
  • Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N. W. S., Pollak, T. A., Tenorio, E. L., & CoroNerve Study, G. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. The Lancet Psychiatry, 7(10), 875-882. https://doi.org/10.1016/s2215-0366(20)30287-x
  • Wahlgren, C., Divanoglou, A., Larsson, M., Nilsson, E., Östholm Balkhed, Å, Niward, K., & Levi, R. (2022). Rehabilitation needs following COVID-19: Five-month post-discharge clinical follow-up of individuals with concerning self-reported symptoms. EClinicalMedicine, 43, 101219. https://doi.org/10.1016/j.eclinm.2021.101219
  • Whiteside, D. M., Oleynick, V., Holker, E., Waldron, E. J., Porter, J., & Kasprzak, M. (2021). Neurocognitive deficits in severe COVID-19 infection: Case series and proposed model. The Clinical Neuropsychologist, 35(4), 799–818. https://doi.org/10.1080/13854046.2021.1874056
  • Wilson, M. E., Barwise, A., Heise, K. J., Loftsgard, T. O., Dziadzko, M., Cheville, A., & Biehl, M. (2018). Long-Term return to functional baseline after mechanical ventilation in the ICU. Critical Care Medicine, 46(4), 562–569. https://doi.org/10.1097/ccm.0000000000002927
  • Yarnall, A. J., Rochester, L., & Burn, D. J. (2013). Mild cognitive impairment in Parkinson’s disease. Age and Ageing, 42(5), 567–576. https://doi.org/10.1093/ageing/aft085
  • Zhou, H., Lu, S., Chen, J., Wei, N., Wang, D., Lyu, H., & Hu, S. (2020). The landscape of cognitive function in recovered COVID-19 patients. Journal of Psychiatric Research, 129, 98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022
  • Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x