200
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, and 40K in soil samples of oil-producing areas of South Africa

ORCID Icon & ORCID Icon
Pages 2665-2677 | Received 29 Apr 2021, Accepted 19 Sep 2021, Published online: 03 Oct 2021

References

  • Abu-Khadra SA, Eissa HS. 2008. Natural radionuclides in different plants, together with their corresponding soils in Egypt at Inshas region and the area nearby. IX Radiation Physics & Protection Conference. Nasr City – Cairo (Egypt). p. 239–249.
  • Adedokun MB, Aweda MA, Maleka PP, Obed RI, Ogungbemi KI, Ibitoye ZA. 2019. Natural radioactivity contents in commonly consumed leafy vegetables cultivated through surface water irrigation in Lagos state, Nigeria. J Radiat Res Appl Sci. 12(1):147–156. doi:10.1080/16878507.2019.1618084.
  • Adukpo OK, Ahiamadjie H, Tandoh JB. 2011. Assessment of NORM at diamond cement factory and its effects in the environment. J Radiat Res Appl Sci. 287(1):87–92. doi:10.1007/s10967-010-0844-6.
  • Ahmad AY, Al-Ghouti MA, Al-Sadig I. 2019. Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples. Sci Rep. 9(1):12196. doi:10.1038/s41598-019-48500-x.
  • Ajanaku O, Ilori AO, Ibitola GA, Faturoti OB. 2018. Assessment of natural radioactivity and associated dose rates in surface soils around Oluwa glass industry environments, igbokoda, ondo state, southwestern Nigeria. Phy Sci Int J. 20(3):1–13. 10.9734/PSIJ/2018/42372.
  • Ajayi OS, Dike CG. 2016. Radiological hazard assessment of natural radionuclides in soils of some oil-producing areas in Nigeria. Environ Forensics. 17(3):253–262. doi:10.1080/15275922.2016.1177756.
  • Akhtar N, Tufail M, Ashraf M. 2005. Natural environmental radioactivity and estimation of radiation exposure from saline soils. Int J Environ Sci Technol. 1(4):279–285. doi:10.1007/BF03325843.
  • Akpanowo MA, Umaru I, Iyakwari S. 2019. Assessment of radiological risk from the soils of artisanal mining areas of Anka, northwest Nigeria. Afr J Environ Sci Technol. 13(8):303–309. doi:10.5897/AJEST2019.2691.
  • Alzubaidi G, Hamid FB, Abdul RI. 2016. Assessment of natural radioactivity levels and radiation hazards in agricultural and virgin soil in the state of Kedah, north of Malaysia. Sci World J. 6178103. doi:10.1155/2016/6178103
  • Araromi OI, Ojo AO, Olaluwoye MO, Odefemi OB. 2016. The concentration of natural radionuclides in soil samples from the practical year agricultural farmland, university of Ibadan. IOSR J Appl Phys (IOSR-JAP). 8(4 Ver. III):60–68. doi:10.9790/4861-0804036068.
  • Ashraf MA, Maah MJ, Yusoff IB. 2014. Soil contamination, risk assessment, and remediation. Environ Sci. doi:10.5772/57287
  • Awad AI, El-Taher A, Alruwaili MHM. 2018. Assessment of natural radioactivity levels and radiation hazard indices for soil samples from Abha, Saudi Arabia. Results Phys. 11:325–330. doi:10.1016/j.rinp.2018.09.013
  • Ayşe D, Meryem Y. 2017. Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. J Radiat Res Appl Sci. 10(4):348–352. doi:10.1016/j.jrras.2017.09.005.
  • Bilgici CG. 2020. Determination of natural radioactivity in products of animals fed with grass: a case study for Kars region, Turkey. Sci Rep. 10(1):6939. doi:10.1038/s41598-020-63845-4.
  • Bramki A, Ramdhane M, Benrachi F. 2018. Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. J Radiat Res Appl Sci. 11(1):49–55. doi:10.1016/j.jrras.2017.08.002.
  • Carvalho FP. 2017. Mining industry and sustainable development: time for change. Food Energy Security. 6(2):2048–3694. doi:10.1002/fes3.109.
  • Darko G, Faanu A, Akoto O, Acheampong A, Goode EJ, Gyamfi O. 2015. Distribution of natural and artificial radioactivity in soils, water, and tuber crops. Environ Monit Assess. 187(6):339. doi:10.1007/s10661-015-4580-9.
  • Eisenbud M, Gesell TF. 1997. Environmental radioactivity from natural, industrial & military sources, fourth edition from natural, industrial and military sources. Academic Press.
  • El-Taher A, Al-Zahrani JH. 2014. Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia. Ind J Pure Appl Phys. 52:147–154.
  • [EPA] Environmental Protection Agency. 1997. An effects assessment and analysis: special report on environmental endocrine disruption. Washington (DC): Risk assessment forum. EPA630R96012.
  • [ECRP] European Commission Radiation Protection on Radiation Protection. 1999. Report on the radiological protection principles concerning the natural radioactivity of building materials. ECRP. 112:1–16.
  • Fisher DR, Fahey FH. 2017. Appropriate use of effective dose in radiation protection and risk assessment. Health Phys. 113(2):102–109. doi:10.1097/HP.0000000000000674.
  • Gad A, Saleh A, Khalifa M. 2019. Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arab J Geosci. 12(6):188. doi:10.1007/s12517-019-4356-6.
  • Ghazwa A, Fauziah BSH, Abdul IR. 2016. Assessment of natural radioactivity levels and radiation hazards in agricultural and virgin soil in the state of Kedah, North of Malaysia. Sci World J. 16:1–9. doi:10.1155/2016/6178103
  • Ghosh BN, Singh RD. 2001. Potassium release characteristics of some soils of Uttar Pradesh hills varying in altitude and their relationship with forms of soil K and clay mineralogy. Geoderma. 104(1–2):135–144. doi:10.1016/S0016-7061(01)00078-7.
  • Gilbert IA, Olanrewaju A, Ilori AO, Aremu OR, Omosebi IAA. 2018. Measurement of (40K, 238U and 232Th) and associated dose rates in soil and commonly consumed foods (vegetables and tubers) at okitipupa, ondo state, Southwestern Nigeria. Asian J Res Rev Phys. 1(1):1–11. doi:10.9734/ajr2p/2018/v1i124597.
  • Guembou SCJ, Samafou P, Moyo MN, Gregoire C, Eric JNM, Alexandre NE, Motapon O, Strivay D. 2017. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. MethodsX. 4:42–54. doi:10.1016/j.mex.2016.12.003.
  • Hamidalddin SHQ. 2014. Determination of agriculture soil primordial radionuclide concentrations in Um Hablayn, North Jeddah West of Saudi Arabia. Int J Curr Microbiol Appl Sci. 3(6):623–633.
  • Hany E, Maher TH, Emran ES. 2019. Evaluation of natural radioactivity levels in soil and various foodstuffs from Delta Abyan, Yemen. J Radiat Res Appl Sci. 12(1):226–233. doi:10.1080/16878507.2019.1646523.
  • Haque M, Ferdous MJ. 2017. Natural radionuclides present in air and water near nuclear research reactor Savar Bangladesh. Int J Sci Eng Res. 8(5):978–983.
  • Hussein ZA. 2019. Assessment of natural radioactivity levels and radiation hazards for soil samples used in Erbil governorate, Iraqi Kurdistan. ARO- Sci J Koya Univ. 7(1):34–39. doi:10.14500/aro.10471.
  • Ilori AO, Chetty N. 2021. Radiological dose assessments of fish samples due to the presence of NORMs at oil-rich areas of South Africa. Environ Forensics. 22(1–2):28–36. doi:10.1080/15275922.2020.1806150.
  • Ilori AO, Chetty N, Adeleye B. 2020. Activity concentration of natural radionuclides in sediments of Bree, Klein-Brak, Bakens, and uMngeni rivers and their associated radiation hazard indices. Trans R Soc South Africa. 75(3):258–265. doi:10.1080/0035919X.2020.1815894.
  • [IAEA] International Atomic Energy Agency. 1989. Measurement of radionuclides in food and the environment. Vienna. Technical Reports Series No. 295 of the IAEA.
  • [IAEA] International Atomic Energy Agency. 2003. Radiation protection and the management of radioactive waste in the oil and gas industry. IAEA safety report series No. 34, 0609-Radiation Protection.
  • [IAEA] International Atomic Energy Agency. 2007. Naturally occurring radioactive material (NORM V). Proceedings of the Fifth International Symposium. Seville (Spain).
  • [ICRP] International Commission on Radiological Protection. 1991. Series report of the 1990 recommendations of the ICRP Publication No. 60. Ann ICRP. 21:1–3.
  • Iwetan C, Fuwape I, Arogunjo A, Obor G. 2015. Assessment of activity concentration of radionuclides in sediment from oil producing communities of Delta State, Nigeria. J Environ Prot. 6(6):640–650. doi:10.4236/jep.2015.66058.
  • Jabbar T, Khan K, Subhani MS, Akhter P, Jabbar A. 2008. Environmental gamma radiation measurement in district swat, Pakistan. Radiat Prot Dosim. 132(1):88–93. doi:10.1093/rpd/ncn253.
  • Jibiri NN, Fasae KP. 2012. Activity concentrations of 226Ra, 232Th and 40K in brands of fertilizers used in Nigeria. Radiat Prot Dosim. 148(1):132–137. doi:10.1093/rpd/ncq589.
  • Joel GS, Penabei S, Ndontchueng MM, Chene G, Mekontso EJ, Ebongue AN, Ousmanou M, David S. 2016. Precision measurement of radioactivity in gamma-rays spectrometry using two HPGe detectors (BEGe-6530 and GC0818-7600SL models) comparison techniques: application to the soil measurement. MethodsX. 4:42–54. doi:10.1016/j.mex.2016.12.003.
  • Khandaker MU, Jojo PJ, Kassim HA. 2012. Determination of primordial radionuclides in natural samples using hpge gamma-ray spectrometry. APCBEE Procedia. 1:187–192. doi:10.1016/j.apcbee.2012.03.030.
  • Kirkpatrick JM, Russ W, Venkataram R, Young BM. 2015. Calculation of the detection limit in radiation measurements with systematic uncertainties, nuclear instruments and methods in physics research section A: accelerators, spectrometers. Detect Assoc Equip. 784:306–310. doi:10.1016/j.nima.2015.01.005.
  • Larivière D, Guérin N. 2010. Radionuclides: natural: in encyclopedia of inorganic chemistry. In: King RB, Crabtree RH, Lukehart CM, Atwood DA, Scott RA, editors. doi:10.1002/0470862106.ia700.
  • Lecomte JF, Shaw P, Liland A, Markkanen M, Egidi P, Andresz S, Mrdakovic-Popic J, Liu F, daCosta LD, Okyar HB, et al. 2019. Radiological protection from naturally occurring radioactive material (NORM) in industrial processes. ICRP Publication 142. 48(4):5–67. doi:10.1177%2F0146645319874589.
  • Li X, Zhang Y, Wang W. 2018. Establishing grading indices of available soil potassium on paddy soils in Hubei province, China. Sci Rep. 8(1):16381. doi:10.1038/s41598-018-33802-3.
  • Maiello ML. 2010. Ionizing radiation exposure of the population of the United States. Health Phys. 98(3):549–550. NCRP Report No. 160. doi:10.1097/01.hp.0000356672.44380.b7.
  • Nabhani KA, Khan F, Yang M. 2016. Technologically enhanced naturally occurring radioactive materials in oil and gas production: a silent killer. Process Saf Environ Prot. 99:237–247. doi:10.1016/j.psep.2015.09.014.
  • [NCRP] National Council on Radiation Protection and Measurements. 1993. Risk estimates for radiation protection. Bethesda (Maryland). Report No. 115.
  • Noli F, Tsamos P, Stoulos S. 2017. Spatial and seasonal variation of radionuclides in soils and waters near a coal-fired power plant of Northern Greece: environmental dose assessment. J Radioanal Nucl Chem. 311(1):331–338. doi:10.1007/s10967-016-5082-0.
  • NRC. 1999. Natural radioactivity and radiation, national research council committee on evaluation of EPA guidelines for exposure to naturally occurring radioactive materials. Washington (DC): National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK230654/.
  • Oni OM, Farai IP, Awodugba AO. 2011. Natural radionuclide concentrations and radiological impact assessment of river sediments of the coastal areas of Nigeria. J Environ Prot. 2(4):418–423. 10.4236/jep.2011.24047.
  • [OECD] Organization for Economic Cooperation and Development. 1979. Exposure to radiation from the natural radioactivity in building materials. Paris (France). Report by a group of experts of the OECD nuclear energy agency
  • Paschoa AS. 1997. Naturally occurring radioactive materials (NORM) and petroleum origin. Appl Radiat Isot. 48(10–12):1391–1396. doi:10.1016/S0969-8043(97)00134-6.
  • Paschoa AS, Steinhäusler F. 2010. Radioactivity in the environment: technologically enhanced natural radiation. Elsevier Publications. Vol. 17; p. iii. doi:10.1016/S1569-4860(09)01712-4.
  • Rühm W, Azizova T, Bouffler S, Cullings HM, Grosche B, Little MP, Shore RS, Walsh L, Woloschak GE. 2018. Typical doses and dose rates in studies pertinent to radiation risk inference at low doses and low dose rates. J Radiat Res. 59(suppl_2):ii1–ii10. doi:10.1093/jrr/rrx093.
  • Sahoo SK, Kierepko R, Sorimachi A. 2016. Natural radioactivity level and elemental composition of soil samples from a high background radiation area on the eastern coast of India (ODISHA). Radiat Prot Dosim. 171(2):172–178. doi:10.1093/rpd/ncw052.
  • Senthilkumar RD, Narayanaswam R. 2016. Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J Radiat Res Appl Sci. 9(4):449–456. doi:10.1016/j.jrras.2016.07.002.
  • Shahbazi-Gahrouei D, Setayandeh S, Gholami M. 2013. A review on natural background radiation. Adv Biomed Res. 2(1):65. doi:10.4103/2277-9175.115821.
  • Shanthi G, Maniyan CG, Allan GRG, Thampi TKJ. 2009. Radioactivity in food crops from high background radiation area in southwest India. Curr Sci. 97(9):1331–1335.
  • Simon RC, James AS, Michael EP. 2012. Chapter 7 - radiation detectors, physics in nuclear medicine. 4th ed., p. 87–106. doi:10.1016/B978-1-4160-5198-5.00007-1.
  • Smičiklas I, Šljivić-Ivanović M. 2016. Radioactive contamination of the soil: assessments of pollutants mobility with implication to remediation strategies. Soil contamination – current Consequences And Further Solutions. InTech; p. 253–276.
  • Songül AÖ, Uğur Ç, Halim T. 2019. Comparison of active and passive radon survey in cave atmosphere and estimation of the radon exposed dose equivalents and gamma absorbed dose rates. Isotopes Environ Health Stud. 55(1):92–109. doi:10.1080/10256016.2018.1557163.
  • [SAES] South African Energy Sector Report. 2018. Report as published by the directorate of energy data collection, management, and analysis. http://www.energy.gov.za/files/media/explained/2018-South-African-Energy-Sector-Report.pdf.
  • Steffan JJ, Brevik EC, Burgess LC, Cerdà A. 2018. The effect of soil on human health: an overview. Eur J Soil Sci. 69(1):159–171. doi:10.1111/ejss.12451.
  • Taqi AH, Shaker AM, Battawy AA. 2018. Natural radioactivity assessment in soil samples from Kirkuk city of Iraq using HPGe detector. Int J Radiat Res. 16(4):455–464. http://ijrr.com/article-1-2398-en.html.
  • Tufail M, Nasim A, Waqas M. 2006. Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. Radiat Meas. 41(4):443–451. doi:10.1016/j.radmeas.2005.10.007.
  • Turhan S, Gürbüz G. 2008. Radiological significance of cement used in building construction in Turkey. Radiat Prot Dosim. 129(4):391–396. doi:10.1093/rpd/ncm454.
  • [UNSCEAR] United Nations Scientific Committee on the Effects of Atomic Radiation. 1993. Sources and effects of ionizing radiation: report to the general assembly, with scientific annexes. Vol. I. New York (NY): United Nations.
  • [UNSCEAR] United Nations Scientific Committee on the Effects of Atomic Radiation. 2000. Sources and effects of ionizing radiation: 2000 report to the general assembly, with scientific annexes. Vol. I. New York (NY): United Nations.
  • [UNSCEAR] United Nations Scientific Committee on the Effects of Atomic Radiation. 2008.Sources and effects of ionizing radiation, report to the general assembly, with scientific annexes. Vol. I. Scientific annexes A and B.
  • van Wyk NJS. 1989. Application of sequence stratigraphy to oil and gas exploration in Bredasdorp basin offshore South Africa. AAPG Bull. 73: 3. United States.
  • Wallbrink PJ, Walling DE, He Q. 2002. Radionuclide measurement using HPGe gamma spectrometry. In: Zapata F, editor. Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. Dordrecht: Springer. doi:10.1007/0-306-48054-9_5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.