169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improvement of Floxin photocatalytic degradability in the presence of sulfite: Performance, kinetic, degradation pathway, energy consumption and total cost of system

ORCID Icon, & ORCID Icon
Pages 2781-2797 | Received 19 Jul 2021, Accepted 05 Oct 2021, Published online: 26 Oct 2021

References

  • Adhikari S, Kim D-H. 2018. Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem Eng J. 354:692–705. doi:10.1016/j.cej.2018.08.087.
  • Adhikari S, Lee HH, Kim D-H. 2020. Efficient visible-light induced electron-transfer in z-scheme MoO3/Ag/C3N4 for excellent photocatalytic removal of antibiotics of both ofloxacin and tetracycline. Chem Eng J. 391:123504. doi:10.1016/j.cej.2019.123504.
  • Asgari E, Hassani G, Manshouri M, Sheikhmohammadi A, Fakhri Y. 2020a. Enhancement the BuP photo-catalytic degradability by UVC/ZnO through adding exogenous oxidant: mechanism, kinetic, energy consumption. J Environ Chem Eng. 8:103576. doi:10.1016/j.jece.2019.103576.
  • Asgari E, Sheikhmohammadi A, Yeganeh J. 2020b. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol. 164:694–706. doi:10.1016/j.ijbiomac.2020.07.188.
  • Azarpira H, Abtahi M, Sadani M, Rezaei S, Atafar Z, Mohseni SM, Sarkhosh M, Shanbedi M, Alidadi H, Fakhri Y. 2019a. Photo-catalytic degradation of Trichlorophenol with UV/sulfite/ZnO process, simultaneous usage of homogeneous reductive and heterogeneous oxidative agents generator as a new approach of Advanced Oxidation/Reduction Processes (AO/RPs). J Photochem Photobiol A Chem. 374:43–51. doi:10.1016/j.jphotochem.2019.01.010.
  • Azarpira H, Sadani M, Abtahi M, Vaezi N, Rezaei S, Atafar Z, Mohseni SM, Sarkhosh M, Ghaderpoori M, Keramati H. 2019b. Photo-catalytic degradation of triclosan with UV/iodide/ZnO process: performance, kinetic, degradation pathway, energy consumption and toxicology. J Photochem Photobiol A Chem. 371:423–432. doi:10.1016/j.jphotochem.2018.10.041.
  • Azizi S, Alidadi H, Maaza M, Sarkhosh M. 2020. Degradation of Ofloxacin Using the UV/ZnO/Iodide Process in an Integrated Photocatalytic-Biological Reactor Containing Baffles. Industrial & Engineering Chemistry Research. 59, 52:22440–22450. https://doi.org/10.1021/acs.iecr.0c04431
  • Bhatia V, Ray AK, Dhir A. 2016. Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation. Sep Purif Technol. 161:1–7. doi:10.1016/j.seppur.2016.01.028.
  • Botlaguduru VSV, Batchelor B, Abdel-Wahab A. 2015. Application of UV–sulfite advanced reduction process to bromate removal. J Water Process Eng. 5:76–82. doi:10.1016/j.jwpe.2015.01.001.
  • Dhaka S, Kumar R, Lee S-H, Kurade MB, Jeon B-H. 2018. Degradation of ethyl paraben in aqueous medium using advanced oxidation processes: efficiency evaluation of UV-C supported oxidants. J Clean Prod. 180:505–513. doi:10.1016/j.jclepro.2018.01.197.
  • Gupta G, Umar A, Kaur A, Sood S, Dhir A, Kansal S. 2018. Solar light driven photocatalytic degradation of Ofloxacin based on ultra-thin bismuth molybdenum oxide nanosheets. Mater Res Bull. 99:359–366. doi:10.1016/j.materresbull.2017.11.033.
  • Kong Q, He X, Shu L, Miao M-S. 2017. Ofloxacin adsorption by activated carbon derived from luffa sponge: kinetic, isotherm, and thermodynamic analyses. Process Saf Environ Prot. 112:254–264. doi:10.1016/j.psep.2017.05.011.
  • Lee C-G, Javed H, Zhang D, Kim J-H, Westerhoff P, Li Q, Alvarez PJ. 2018. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ Sci Technol. 52:4285–4293. doi:10.1021/acs.est.7b06508.
  • Lin -C-C, Lin H-Y, Hsu L-J. 2016. Degradation of ofloxacin using UV/H2O2 process in a large photoreactor. Sep Purif Technol. 168:57–61. doi:10.1016/j.seppur.2016.04.052.
  • Liu X, Yoon S, Batchelor B, Abdel-Wahab A. 2013. Photochemical degradation of vinyl chloride with an advanced reduction process (ARP)–effects of reagents and pH. Chem Eng J. 215:868–875. doi:10.1016/j.cej.2012.11.086.
  • Maharana D, Niu J, Rao NN, Xu Z, Shi J. 2015. Electrochemical degradation of triclosan at a Ti/SnO2‐Sb/Ce‐PbO2 anode. CLEAN Soil Air Water. 43:958–966. doi:10.1002/clen.201400180.
  • Moussavi G, Pourakbar M, Shekoohiyan S, Satari M. 2018a. The photochemical decomposition and detoxification of bisphenol A in the VUV/H2O2 process: degradation, mineralization, and cytotoxicity assessment. Chem Eng J. 331:755–764. doi:10.1016/j.cej.2017.09.009.
  • Moussavi G, Rezaei M, Pourakbar M. 2018b. Comparing VUV and VUV/Fe2+ processes for decomposition of cloxacillin antibiotic: degradation rate and pathways, mineralization and by-product analysis. Chem Eng J. 332:140–149. doi:10.1016/j.cej.2017.09.057.
  • Murcia-López S, Villa K, Andreu T, Morante JR. 2015. Improved selectivity for partial oxidation of methane to methanol in the presence of nitrite ions and BiVO 4 photocatalyst. Chem Commun. 51:7249–7252. doi:10.1039/C5CC00978B.
  • Oturan MA, Sirés I, Zhou M. 2018. Electro-Fenton Process: new trends and scale-up. The Handbook of Environmental Chemistry. Springer Singapore.
  • Peres M, Maniero M, Guimaraes J. 2015. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity. Photochem Photobiol Sci. 14:556–562. doi:10.1039/C4PP00256C.
  • Rasolevandi T, Naseri S, Azarpira H, Mahvi A. 2019. Photo-degradation of dexamethasone phosphate using UV/Iodide process: kinetics, intermediates, and transformation pathways. J Mol Liq. 295:111703. doi:10.1016/j.molliq.2019.111703.
  • Saleh TA, Gupta VK. 2012. Photo-catalyzed degradation of hazardous dye methyl Orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci. 371:101–106. doi:10.1016/j.jcis.2011.12.038.
  • Saravanan R, Gupta V, Mosquera E, Gracia F. 2014. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J Mol Liq. 198:409–412. doi:10.1016/j.molliq.2014.07.030.
  • Saravanan R, Sacari E, Gracia F, Khan MM, Mosquera E, Gupta VK. 2016. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq. 221:1029–1033. doi:10.1016/j.molliq.2016.06.074.
  • Sarkhosh M, Sadani M, Abtahi M, Azarpira H, Alidadi H, Atafar Z, Rezaei S, Mohseni SM, Vaezi N, Fakhri Y. 2019. Photo-biological degradation of Bisphenol A, UV/ZnO/Iodide process at the center of biological reactor. J Photochem Photobiol A Chem. 374:115–124. doi:10.1016/j.jphotochem.2019.01.040.
  • Sheikhmohammadi A, Mohseni SM, Hashemzadeh B, Asgari E, Sharafkhani R, Sardar M, Sarkhosh M, Almasiane M. 2019. Fabrication of magnetic graphene oxide nanocomposites functionalized with a novel chelating ligand for the removal of Cr (VI): modeling, optimization, and adsorption studies. Desalination Water Treatment. 160:297–307. doi:10.5004/dwt.2019.24381.
  • Sood S, Mehta SK, Sinha A, Kansal SK. 2016. Bi2O3/TiO2 heterostructures: synthesis, characterization and their application in solar light mediated photocatalyzed degradation of an antibiotic, ofloxacin. Chem Eng J. 290:45–52. doi:10.1016/j.cej.2016.01.017.
  • Tang J, Zong L, Mu B, Kang Y, Wang A. 2018. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal. Korean J Chem Eng. 35:1650–1661. doi:10.1007/s11814-018-0066-0.
  • Xu Y, Lin Z, Zhang H. 2016. Mineralization of sucralose by UV-based advanced oxidation processes: UV/PDS versus UV/H2O2. Chem Eng J. 285:392–401. doi:10.1016/j.cej.2015.09.091.
  • Zhang D, Qi J, Ji H, Li S, Chen L, Huang T, Xu C, Chen X, Liu W. 2020. Photocatalytic degradation of ofloxacin by perovskite-type NaNbO3 nanorods modified g-C3N4 heterojunction under simulated solar light: theoretical calculation, ofloxacin degradation pathways and toxicity evolution. Chem Eng J. 400:125918. doi:10.1016/j.cej.2020.125918.
  • Zhang W, Liu Y, Li C. 2018a. Photocatalytic degradation of ofloxacin on Gd2Ti2O7 supported on quartz spheres. J Phys Chem Solids. 118:144–149. doi:10.1016/j.jpcs.2018.03.019.
  • Zhang W, Yang J, Li C. 2018b. Role of thermal treatment on sol-gel preparation of porous cerium titanate: characterization and photocatalytic degradation of ofloxacin. Mater Sci Semiconductor Processing. 85:33–39. doi:10.1016/j.mssp.2018.05.035.
  • Zhao G, Ding J, Zhou F, Chen X, Wei L, Gao Q, Wang K, Zhao Q. 2020. Construction of a visible-light-driven magnetic dual Z-scheme BiVO4/g-C3N4/NiFe2O4 photocatalyst for effective removal of ofloxacin: mechanisms and degradation pathway. Chem Eng J. 405:126704. doi:10.1016/j.cej.2020.126704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.