181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of activity concentrations of 40K, 238U and 232Th for assessment of radiation dose in agricultural soils of southwestern Nigeria

, ORCID Icon &
Pages 1640-1651 | Received 29 May 2022, Accepted 13 Aug 2022, Published online: 30 Aug 2022

References

  • Adedokun MB, Aweda MA, Maleka PP, Obed RI, Ibitoye ZA. 2020. Evaluation of natural radionuclides and associated radiation hazard indices in soil and water from selected vegetable farmlands in Lagos, Nigeria. Environ Forensics. doi:10.1080/15275922.2020.1850557.
  • Ajayi OS. 2009. Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys. 48(3):323–332. doi:10.1007/s00411-009-0225-0.
  • Ajayi OS, Ibikunle SB, Ojo TJ. 2008. An assessment of natural radioactivity of soils and its external radiological impact in southwestern Nigeria. Health Phys. 94(6):558–566. doi:10.1097/01.HP.0000309766.12663.1d.
  • Al-Hamarneh IF, Alkhomashi N, Almasoud FI. 2016. Study on the radioactivity and soil-to-plant transfer factor of 226Ra, 234U and 238U radionuclides in irrigated farms from the northwestern Saudi Arabia. J Environ Radioact. 160:1–7. doi:10.1016/j.jenvrad.2016.04.012.
  • Aladeniyi K, Olowookere C, Oladele BB. 2019. Measurement of natural radioactivity and radiological hazard evaluation in the soil samples collected from Owo, Ondo State, Nigeria. J Radiat Res Appl Sci. 12(1):200–209. doi:10.1080/16878507.2019.1593675.
  • Alsaffar MS, Jaafar MS, Kabir NA, Ahmad N. 2015. Distribution of 226Ra, 232Th, and 40K in rice plant components and physico-chemical effects of soil on their transportation to grains. J Radiat Res Appl Sci. 8(3):300–310. doi:10.1016/j.jrras.2015.04.002.
  • Alzubaidi G, Hamid FBS, Rahman IA. 2016. Assessment of natural radioactivity levels and radiation hazards in agricultural and virgin soil in the State of Kedah, North of Malaysia. Sci World J. 2016:6178103. doi:http://dx.doi.org/10.1155/2016/6178103.
  • Amanjeet P, Kumar A, Kumar S, Singh J, Singh P, Bajwa BS. 2017. Assessment of natural radioactivity levels and associated dose rates in soil samples from historical city Panipat, India. J Radiat Res Appl Sci. 10(3):283–288. doi:10.1016/j.jrras.2017.05.006.
  • Arogunjo AM, Hollriegl V, Giussani A, Leopold K, Gerstmann U, Veronese I, Oeh U. 2009. Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J Environ Radioact. 100(3):232–240. doi:10.1016/j.jenvrad.2008.12.004.
  • Asaduzzaman K, Khandaker M, Amin Y, Mahat R. 2015. Uptake and distribution of natural radioactivity in rice from soil in north and west part of Peninsular Malaysia for the estimation of ingestion dose to man. Ann Nucl Energy. 76:85–93. doi:10.1016/j.anucene.2014.09.036.
  • Avwiri GO, Agbalagba EO. 2013. Assessment of natural radioactivity, associated radiological health hazards indices and soil-to-crop transfer factors in cultivated area around a fertilizer factory in Onne, Nigeria. Environ Earth Sci. 71(4):1541–1549.
  • Avwiri GO, Ononugbo CP, Olasoji JM. 2021. Radionuclide transfer factors of staple foods and its health risks in Niger Delta Region of Nigeria. Int J Innov Environ Studies Res. 9(1):21–32.
  • Belivermis M, Ö K, Çotuk Y, Topcuoğlu S. 2010. The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess. 163(1–4):15–26. doi:10.1007/s10661-009-0812-1.
  • Beretka J, Mathew PJ. 1985. Natural radioactivity of Australia building materials industrial wastes and byproducts. Health Phys. 48(1):87–95. doi:10.1097/00004032-198501000-00007.
  • Bilgici-Cengiz G. 2019. Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey. J Radioanal Nucl Chem. 319(1):83–89. doi:10.1007/s10967-018-6337-8.
  • Bramki A, Ramdhane M, Benrachi A. 2018. Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. J Radiat Res Appl Sci. 11(1):49–55. doi:10.1016/j.jrras.2017.08.002.
  • Darko G, FaanuA AO, Acheampong A, Goode EJ, Gyamfi O 2015. Distribution of natural and artificial radioactivity in soils, water and tuber crops. Environ Monit Assess. 187:339. doi:10.1007/s10661-015-4580-9
  • Dike CG, Oladele BO, Olubi OE, Ife-Adediran OO, Aderibigbe A. 2020. Ecological and radiological hazards due to natural radioactivity and heavy metals in soils of some selected mining sites in Nigeria. Hum Ecol Risk Assess an Int J. 26(5):1428–1438. doi:10.1080/10807039.2019.1585182.
  • El-Gamal H, Hussien MT, Saleh EE. 2019. Evaluation of natural radioactivity levels in soil and various foodstuffs from Delta Abyan, Yemen. J Radiat Res Appl Sci. 12(1):226–233. doi:10.1080/16878507.2019.1646523.
  • Gad A, Saleh A, Khalifa M. 2019. Assessment of natural radionuclides and related occupational risk in agricultural soil, southeastern Nile Delta, Egypt. Arab J Geosci. 12(6):188. doi:10.1007/s12517-019-4356-6.
  • Guidotti L, Carini F, Rossi R, Gatti M, Cenci RM, Beone GM. 2015. Gamma-Spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, Northern Italy. J Environ Radioact. 142:36–44. doi:10.1016/j.jenvrad.2015.01.010.
  • IAEA. 1989. Measurement of radiation in food and the environment; a guidebook. Technical report series, No. 295. Austria: International Atomic Energy Agency (IAEA).
  • Ibikunle SB, Ajayi OS, Arogunjo AM. 2013. Effect of geology on soil radioactivity and risks to humans based on data from several towns in Nigeria. Environ Forensics. 14(3):240–247. doi:http://dx.doi.org/10.1080/15275922.2013.814175.
  • Ibikunle SB, Arogunjo AM, Ajayi OS. 2019. Characterization of radiation dose and soil-to-plant transfer factor of natural radionuclides in some cities from south-western Nigeria and its effect on man. Sci Afr. 3:e00062. doi:10.1016/j.sciaf.2019.e00062.
  • ICRP. 2007. The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103 . : Annals of the ICRP, 37(2-4). Elsevier, Amsterdam, Netherlands. 07 01 2022 http://www.elsevier.com/wps/find/bookdescription.cws_home/714371/description#description; pp. .
  • Ilori AO, Chetty N. 2020. Soil-To-Crop transfer of natural radionuclides in farm soil of South Africa. Environ Monit Assess. 192(12):775. doi:10.1007/s10661-020-08756-7.
  • Jayasinghe C, Pinnawala UC, Rathnayaka T, Waduge V. 2020. Annual committed effective dosage from natural radionuclides by ingestion of local food growing in mineral mining area, Sri Lanka. Environ Geochem Health. 42(7):2205–2214. doi:10.1007/s10653-019-00487-0.
  • Jibiri NN, Alausa SK, Farai IP. 2009a. Assessment of external and internal doses due to farming in high background radiation areas in old tin mining localities in Jos-plateau, Nigeria. Radioprotection. 44(2):139–151. doi:10.1051/radiopro/2009001.
  • Jibiri NN, Alausa SK, Farai IP. 2009b. Radiological hazard indices due to activity concentrations of natural radionuclides in farm soils from two high background radiation areas in Nigeria. Int J Low Radiat. 6(2):79–95. doi:10.1504/IJLR.2009.028529.
  • Nwaka BU, Jibiri NN. 2018. External and internal radiation doses from chemical fertilizers used in Ibadan, Oyo State, Nigeria. Glo J Sci Front Res: A Phys Space Sci. 18(4):73–81.
  • Oshin IO, Rahaman MA. 1985. Uranium favourability studies in Nigeria. J Afr Earth Sci. 5(1):167–175.
  • Ribeiro FC, Lauria DC, Rio MA, da Cunha FG, Sousa WO, Franzen LEM. 2017. Mapping soil radioactivity in the Fernando de Noronha Archipelago, Brazil. J Radioanal Nucl Chem. 311:577–587. doi:10.1007/s10967-016-5059-z.
  • Sarap NB, Nikolić JDK, Trifković JD, Janković MM. 2020. Assessment of radioactivity contribution and transfer characteristics of natural radionuclides in agroecosystem. J Radioanal Nucl Chem. 323(2):805–815. doi:10.1007/s10967-019-06986-9.
  • Tyovenda AA, Ocheje JA, Terver S, Uttah EU. 2022. Investigation of the radiological risk of farmlands and the transfer factor from soil to crops in Jalingo and Wukari L.G.A of Taraba State, Nigeria. J Environ Prot. 13(01):1–14. doi:10.4236/jep.2022.131001.
  • Ugbede FO. 2018. Measurement of background ionizing radiation exposure levels in selected farms in communities of Ishielu LGA, Ebonyi State, Nigeria. J Appl Sci Environ Manage. 22(9):1427–1432.
  • Ugbede FO. 2020. Distribution of 40K, 238U and 232Th and associated radiological risks in River sand sediments across Enugu East, Nigeria. Environ Nanotech Monit Manage. 14:100317. doi:10.1016/j.enmm.2020.100317.
  • Ugbede FO, Osahon OD. 2021. Soil-to-plant transfer factors of 238U and 232Th in rice from Ezillo paddy fields, Ebonyi State, Nigeria. J Environ Radioact. 233:106606. doi:10.1016/j.jenvrad.2021.106606.
  • Ugbede FO, Osahon OD, Agbalagba EO. 2021. Radiological risk assessment of 238U, 232Th and 40K in soil and their uptake by rice cultivated in CAS paddy environment of Abakaliki, Nigeria. Chem Afr. 4(3):691–701. doi:10.1007/s42250-021-00244-w.
  • Ugbede FO, Osahon OD, Akpolile AF. 2022. Natural radioactivity levels of 238U, 232Th and 40K and radiological risk assessment in paddy soil of Ezillo rice fields in Ebonyi State, Nigeria. Environ Forensics. 23(1–2):32–46. doi:10.1080/15275922.2021.1892881.
  • UNSCEAR. 2000. United Nations Scientific Committee on the effect of atomic radiation: exposures from natural radiation sources. Report to general assembly, with scientific annexes. New York: United Nations.
  • Van HD, Nguyen TD, Peka A, Hegedus M, Csordas A, Kovacs T. 2020. Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J Environ Radioact. 223-224:106416. doi:10.1016/j.jenvrad.2020.106416.
  • Yadav P, Garg VK, Singh B, Pulhani V, Mor S. 2018. Transfer factors and effective dose evaluation due to natural radioactivity in staple food grains from the vicinity of proposed nuclear power plant. Exp Health. 10(1):27–39. doi:10.1007/s12403-017-0243-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.