106
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Bioguided fractionation of procyanidin B2 as potent anti coxsackie virus B and Herpes simplex from cypress (Cupressus sempervirens L.)

, , &
Pages 191-200 | Received 02 Sep 2022, Accepted 12 Oct 2022, Published online: 20 Oct 2022

References

  • Aidi Wannes W, Saidani Tounsi M. 2020. Can medicinal plants contribute to the cure of Tunisian COVID-19 patients? J Med Plants Stud. 8:218–226. doi:10.22271/plants.2020.v8.i5c.1218.
  • Amouroux P, Daniel J, Jean‐louis L. 1998. Antiviral activity in vitro of Cupressus sempervirens on two human retroviruses HIV and HTLV. Phytother Res. 12:367–368. doi:10.1002/(SICI)1099-1573(199808)12:5<367:AID-PTR301>3.0.CO;2-N.
  • Anka L, Rammal H, Kobeissi A, Bou Saab H. 2020. Chemical composition and biological potentials of Lebanese Cupressus sempervirens L. leaves extracts. J Med Plant Res. 14:292–299. doi:10.5897/JMPR2019.6843.
  • Boukhris M, Regane G, Yangui T, Sayadi S, Bouaziz M. 2012. Chemical composition and biological potential of essential oil from Tunisian Cupressus sempervirens L. J Arid Land. 22:329–332.
  • Calderon AI, Wright Brian J, Jeffrey Hurst W, Van Breemen RB. 2009. Screening antioxidants using LC-MS: case study with cocoa. J Agric Food Chem. 57:5693–5699. doi:10.1021/jf9014203.
  • Chaudhary HJ, Shahid W, Bano A, Ullah F, Munis F, Fahad S, Ahmad I. 2012. In vitro analysis of Cupressus sempervirens L. plant extracts antibaterial activity. J Med Plant Res. 6:273–276. doi:10.5897/JMPR11.1246.
  • El-Sheikh TMY, Hassan MI, Moselhy WA, Amer MS, Shehata AZ. 2011. Evaluation of the biological activity of some Cupressus semprevirens (Cupressaceae) extracts against the mosquito vector Culex pipiens L.(Diptera: culicidae). Egypt Acad J Biol Sci. 4:33–48. doi:10.21608/eajbsa.2011.15170.
  • Emami SA, Tayarani-Najaran Z, Ghannad MS, Karamadini PK, Karamadini MK. 2009. Antiviral activity of obtained extracts from different parts of Cupressus sempervirens against herpes simplex virus type 1. Iran J Basic Med Sci. 12:133–139.
  • Fernández-Poyatos MP, Llorent-Martínez EJ, Ruiz-Medina A. 2021. Phytochemical composition and antioxidant activity of Portulaca oleracea: influence of the steaming cooking process. Foods. 10:94. doi:10.3390/foods10010094.
  • Flamini R. 2013. Recent applications of mass spectrometry in the study of grape and wine polyphenols. Int Sch Res Notices. 2013:1–45. doi:10.1155/2013/813563.
  • Guo JP, Pang J, Wang XW, Shen ZQ, Jin M, Li JW. 2006. In vitro screening of traditionally used medicinal plants in China against enteroviruses. World J Gastroenterol. 12:4078. doi:10.3748/wjg.v12.i25.4078.
  • Hammami M, Zar Kalai F, Yedess W, Saidani M. 2022. Phenolic compounds as antiviral agents: an in-silico investigation against essential proteins of SARS-CoV-2. Nat Resour Human Health. 2:62–78. doi:10.53365/nrfhh/143085.
  • Hassan JC, Shahid W, Asghari B, Farman U, Farooq M, Shah F, Izhar A. 2012. In vitro analysis of Cupressus sempervirens L. plant extracts antibaterial activity. J Med Plants Res. 6:273–276. doi:10.5897/JMPR11.1246.
  • Lin LZ, Harnly JM. 2012. Quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, benzoic acid derivatives using ultraviolet absorbance after identification by liquid chromatography–mass spectrometry. J Agric Food Chem. 60:5832–5840. doi:10.1021/jf3006905.
  • Liu D, Deng J, Joshi S, Liu P, Zhang C, Yu Y, Zhang R, Fan D, Yang H, D’Souza DH. 2018. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiol. 76:346–353. doi:10.1016/j.fm.2018.06.009.
  • Liu Q, Wang YF, Chen RJ, Zhang MY, Wang YF, Yang CR, Zhang YJ 2009. Anti-coxsackie virus B3 norsesquiterpenoids from the roots of Phyllanthus emblica. J Nat Prod. 72(5):969–972. doi:10.1021/np800792d.
  • Rguez S, Essid R, Papetti A, Msaada K, Hammami M, Mkadmini K, Fares N, Tabbene O, Elkahoui S, Portelli D. 2019. Towards the use of Cupressus sempervirens L. organic extracts as a source of antioxidant, antibacterial and antileishmanial biomolecules. Ind Crop Prod. 131:194–202. doi:10.1016/j.indcrop.2019.01.056.
  • Rguez S, Papetti A, Bourguou S, Msaada K, Hammami M, Mkadmini Hammi K, Hamrouni Sellami I. 2022. Antifungal and antioxidant effects of phenolic acids and flavonol glycosides from Tetraclinis articulata. Arch Phytopathol Plant Prot. 55:284–302. doi:10.1080/03235408.2021.2015888.
  • San Feliciano A, Medarde M, López JL, Puebla P, Gravalos G, García de Quesada MT. 1993. ‘Synthesis and biological activity of bromolignans and cyclolignans. Archiv Pharm. 326:421–426. doi:10.1002/ardp.19933260709.
  • Sauerbrei A. 2016. Herpes genitalis: diagnosis, treatment and prevention. Geburtshilfe Frauenheilkunde. 76:1310–1317. doi:10.1055/s-0042-116494.
  • Smura T, Natri O, Ylipaasto P, Hellman M, Al-Hello H, Piemonti L, Roivainen M. 2015. Enterovirus strain and type-specific differences in growth kinetics and virus-induced cell destruction in human pancreatic duct epithelial HPDE cells. Virus Res. 210:188–197. doi:10.1016/j.virusres.2015.08.003.
  • Spáčil Z, Nováková L, Solich P. 2010. Comparison of positive and negative ion detection of tea catechins using tandem mass spectrometry and ultra high performance liquid chromatography. Food Chem. 123:535–541. doi:10.1016/j.foodchem.2010.04.048.
  • Sudo K, Konno K, Yokota T, Shigeta S. 1995. A screening system for antiviral compounds against herpes simplex virus type 1 using the MTT method with L929 cells. Tohoku J Exp Med. 176:163–171. doi:10.1620/tjem.176.163.
  • Takeuchi H, Baba M, Shigeta S. 1991. An application of tetrazolium (MTT) colorimetric assay for the screening of anti-herpes simplex virus compounds. J Virol Meth. 33:61–71. doi:10.1016/0166-0934(91)90008-N.
  • Tumen I, Süntar I, Keleş H, Küpeli Akkol E. 2012. A therapeutic approach for wound healing by using essential oils of Cupressus and Juniperus species growing in Turkey. Evidence Based Complement Altern Med. 2012:1–7. doi:10.1155/2012/728281.
  • Wagner H, Ulrich-Merzenich G. 2009. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomed. 16:97–110. doi:10.1016/j.phymed.2008.12.018.
  • Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH. 2014. Comparison of in vitro antiviral activity of tea polyphenols against influenza a and B viruses and structure–activity relationship analysis. J Fitoter. 93:47–53. doi:10.1016/j.fitote.2013.12.011.
  • Zheng Y, Zeng X, Chen T, Peng W, Su W. 2020. Chemical profile, antioxidative, and Gut microbiota modulatory properties of ganpu tea: a derivative of Pu-erh tea. Nutrients. 12:224. doi:10.3390/nu12010224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.