1,439
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Cold plasma for sustainable control of hygienically relevant biofilms. The interaction of plasma distance and exposure time

, &
Pages 340-354 | Received 03 Aug 2022, Accepted 14 Nov 2022, Published online: 27 Nov 2022

References

  • Alonso C, Domínguez C, Heras J, Mata E, Pascual V, Torres C, Zarazaga M. 2017. Antibiogramj: a tool for analysing images from disk diffusion tests. Comput Methods Programs Biomed. 143:159–169. doi:10.1016/j.cmpb.2017.03.010.
  • Angoli S, Gutsol A, Fridman A Applications of Gliding Arc as a Source of Atmospheric Pressure Transitional Plasma. In Proceedings of the IEEE Conference Record-Abstracts. 2005 IEEE International Conference on Plasma Science, 2005; pp. 359–359.
  • Anzai K, Aoki T, Koshimizu S, Takaya R, Tsuchida K, Takajo T. 2019. Formation of reactive oxygen species by irradiation of cold atmospheric pressure plasma jet to water depends on the irradiation distance. J Clin Biochem Nutr. 64(3):187–193. doi:10.3164/jcbn.18-102.
  • Bonaventura Z, Bourdon A, Celestin S, Pasko VP. 2011. Electric field determination in streamer discharges in air at atmospheric pressure. Plasma Sources Sci Technol. 20(3):035012. doi:10.1088/0963-0252/20/3/035012.
  • Brun P, Bernabè G, Marchiori C, Scarpa M, Zuin M, Cavazzana R, Zaniol B, Martines E. 2018. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: membrane permeability, biofilm penetration and antimicrobial sensitization. J Appl Microbiol. 125(2):398–408. doi:10.1111/jam.13780.
  • Costa IKF, Vitoriano JO, Saraiva MVA, Negreiros AMP, Sales JR, Alves JR 2020. Inactivation of colletotrichum brevisporum spores by direct and indirect action of cold atmospheric plasma. 22nd International Conference on Gas Discharges and their Applications, Novi Sad, Serbia. p 1–4.
  • Czernichowski A. 1994. Gliding arc: applications to engineering and environment control. Pure Appl Chem. 66(6):1301–1310. doi:10.1351/pac199466061301.
  • Dahle S, Fink R, Žigon J. 2022. Raw and analyzed data for manuscript “Cold plasma for sustainable control of hygienically relevant biofilms. the interaction of plasma distance and exposure time” (1.0.0) [Data set]. Geneva: Zenodo. editor.
  • Dahle S, Žigon J, Gospodarič B, Zaplotnik R, Merhar M, Petrič M. 2020. Open-source integrated plasma treatment and CNC machining system (0.1.0). Geneva: Zenodo.
  • Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J. 2022. Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. 29(1): 27–38. American Chemical Society: Chemical Health & Safety.
  • Domonkos M, Tichá P, Trejbal J, Demo P. 2021. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Appl Sci. 11(11):4809. doi:10.3390/app11114809.
  • Fink R, Potočnik A, Oder M. 2020. Plant-based natural saponins for Escherichia coli surface hygiene management. LWT. 122:109018. doi:10.1016/j.lwt.2020.109018.
  • Giaouris EE, Simões MV. 2018. Pathogenic biofilm formation in the food industry and alternative control strategies. Foodborne Diseases. Handbook of Food Bioengineering. United Kingdom: Academic Press. 309–377.
  • Gilmore BF, Flynn PB, O’Brien S, Hickok N, Freeman T, Bourke P. 2018. Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol. 36(6):627–638. doi:10.1016/j.tibtech.2018.03.007.
  • Gupta TT, Ayan H. 2019. Application of non-thermal plasma on biofilm: a review. Appl Sci. 9(17):3548. doi:10.3390/app9173548.
  • Hagelaar GJM, Pitchford LC. 2005. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol. 14(4):722–733. doi:10.1088/0963-0252/14/4/011.
  • Han L, Ziuzina D, Heslin C, Boehm D, Patange A, Sango DM, Valdramidis VP, Cullen PJ, Bourke P. 2016. Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Front Microbiol. 7:977. doi:10.3389/fmicb.2016.00977.
  • Helmke A, Wandke D, Mahmoodzada M, Weltmann KD, Viöl W. 2013. Impact of electrode design, supply voltage and interelectrode distance on safety aspects and characteristics of a medical DBD plasma source. Contrib Plasma Phys. 53(9):623–638. doi:10.1002/ctpp.201200133.
  • Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR. 2012. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram‐negative and gram‐positive bacteria. Lasers Surg Med. 44(6):490–499. doi:10.1002/lsm.22045.
  • Kampf G. 2018. Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics. 7(4):110. doi:10.3390/antibiotics7040110.
  • Kariž M, Tomec DK, Dahle S, Kuzman MK, Šernek M, Žigon J. 2021. Effect of sanding and plasma treatment of 3D-printed parts on bonding to wood with PVAc adhesive. Polymers. 13(8):1211. doi:10.3390/polym13081211.
  • Khalili F, Shokri B, Khani M-R, Hasani M, Zandi F, Aliahmadi A. 2018. A study of the effect of gliding arc non-thermal plasma on almonds decontamination. AIP Adv. 8(10):105024. doi:10.1063/1.5044476.
  • Klančnik A, Piskernik S, Jeršek B, Možina SS. 2010. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods. 81(2):121–126. doi:10.1016/j.mimet.2010.02.004.
  • Kogelschatz U, Eliasson B, Egli W. 2003. Dielectric-barrier discharges: their history discharge physics, and industrial applications. Plasma Chem Plasma Process. 23(1):1–46. doi:10.1023/A:1022470901385.
  • Krstulović N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetič M. 2006. Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D: Appl Phys. 39(17):3799. doi:10.1088/0022-3727/39/17/014.
  • Kuchenbecker M, Bibinov N, Kaemlimg A, Wandke D, Awakowicz P, Viöl W. 2009. Characterization of DBD plasma source for biomedical applications. J Phys D: Appl Phys. 42(4):045212. doi:10.1088/0022-3727/42/4/045212.
  • Liao X, Cullen PJ, Liu D, Muhammad AI, Chen S, Ye X, Wang J, Ding T. 2018. Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci Total Environ. 645:1287–1295. doi:10.1016/j.scitotenv.2018.07.190.
  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T. 2017. Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control. 75:83–91. doi:10.1016/j.foodcont.2016.12.021.
  • Liu T, Zeng Y, Xue X, Sui Y, Liang Y, Wang F, Feng F. 2021. He-plasma jet generation and its application for E. coli sterilization. J Spectrosc. 2021:1–10. doi:10.1155/2021/6671531.
  • Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner HE. 2007. Atmospheric pressure plasma jet treatment of polyethylene surfaces for adhesion improvement. Plasma Process Polym. 4(S1):1041–1045. doi:10.1002/ppap.200732402.
  • Mai-Prochnow A, Clauson M, Hong J, Murphy AB. 2016. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 6(1):1–11. doi:10.1038/srep38610.
  • Misra N, Roopesh M. 2019. Cold plasma for sustainable food production and processing. Green food processing techniques. UK: Academic Press; pp. 431–453.
  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E. 2022. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0.
  • Nicol MJ, Brubaker TR, Honish BJ, Simmons AN, Kazemi A, Geissel MA, Whalen CT, Siedlecki CA, Bilen SG, Knecht SD. 2020. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep. 10(1):1–11. doi:10.1038/s41598-020-59652-6.
  • Niemira BA, Boyd G, Sites J. 2018. Cold plasma inactivation of Escherichia coli O157: h7 biofilms. Front Sustain Food Syst. 47. doi:10.3389/fsufs.2018.00047.
  • Niveditha A, Pandiselvam R, Prasath VA, Singh SK, Gul K, Kothakota A. 2021. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control. 130:108338. doi:10.1016/j.foodcont.2021.108338.
  • Pancheshnyi S. 2006. Comments on ‘Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas’. J Phys D: Appl Phys. 39(8):1708. doi:10.1088/0022-3727/39/8/N01.
  • Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov KV, Wagner HE. 2005. Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas. J Phys D: Appl Phys. 38(21):3894. doi:10.1088/0022-3727/38/21/010.
  • Paris P, Aints M, Valk F, Plank T, Haljaste A, Kozlov KV, Wagner HE. 2006. Reply to comments on ‘Intensity ratio of spectral bands of nitrogen as a measure of electric field strength in plasmas’. J Phys D: Appl Phys. 38(21):3894. doi:10.1088/0022-3727/38/21/010.
  • Patinglag L, Melling LM, Whitehead KA, Sawtell D, Iles A, Shaw KJ. 2021. Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor. Water Res. 201:117321. doi:10.1016/j.watres.2021.117321.
  • Pitchford CL. 2013. GEC plasma data exchange project. J Phys D: Appl Phys. 46(33):330301. doi:10.1088/0022-3727/46/33/330301.
  • Simões M, Simões LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. Food Sci Technol. 43(4):573–583. doi:10.1016/j.lwt.2009.12.008.
  • Svarnas P, Spiliopoulou A, Koutsoukos PG, Gazeli K, Anastassiou ED. 2019. Acinetobacter baumannii deactivation by means of DBD-based helium plasma jet. Plasma. 2(2):77–90. doi:10.3390/plasma2020008.
  • Todorova Y, Benova E, Marinova P, Yotinov I, Bogdanov T, Topalova Y. 2022. Non-thermal atmospheric plasma for microbial decontamination and removal of hazardous chemicals: an overview in the circular economy context with data for test applications of microwave plasma torch. Processes. 10(3):554. doi:10.3390/pr10030554.
  • Zaplotnik R, Primc G, Vesel A. 2021. Optical emission spectroscopy as a diagnostic tool for characterization of atmospheric plasma jets. Appl Sci. 11(5):2275. doi:10.3390/app11052275.
  • Zhu Y, Li C, Cui H, Lin L. 2020. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci Technol. 99:142–151. doi:10.1016/j.tifs.2020.03.001.
  • Zimmermann J, Shimizu T, Schmidt H, Li Y, Morfill G, Isbary G. 2012. Test for bacterial resistance build-up against plasma treatment. New J Phys. 14(7):073037. doi:10.1088/1367-2630/14/7/073037.
  • Ziuzina D, Boehm D, Patil S, Cullen P, Bourke P. 2015. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 10(9):e0138209. doi:10.1371/journal.pone.0138209.