127
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Effects of certain physical stresses on the composition of the membrane of bacteria implicated in food and environmental contamination

, &
Pages 408-418 | Received 28 Sep 2022, Accepted 19 Nov 2022, Published online: 01 Dec 2022

References

  • Akhila PP, Sunooj KV, Aaliya B, Navaf M, Sudheesh C, Sabu S, Sasidharan AM, Mir SA, George J, Mousavi Khaneghah A. 2021. Application of electromagnetic radiations for decontamination of fungi and mycotoxins in food products: a comprehensive review. Trends in Food Science & Tech. 114:399–409. doi:https://doi.org/10.1016/j.tifs.2021.06.013.
  • Ayari S, Dussault D, Millette M, Hamdi M, Lacroix M. 2009. Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella Typhi induced by gamma irradiation treatment. Int J Food Microbiol. 135(1):1–6. doi:10.1016/j.ijfoodmicro.2009.07.012.
  • Besada-Lombana PB, Fernandez-Moya R, Fenster J, Da Silva NA. 2017. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnol Bioeng. 114(7):1531–1538. doi:10.1002/bit.26288.
  • Bhuiyan MR, Rahman MM, Shaid A, Bashar MM, Khan MA. 2016. Scope of reusing and recycling the textile wastewater after treatment with gamma radiation. J Clean Prod. 112:3063–3071. doi:10.1016/j.jclepro.2015.10.029.
  • Changotra R, Rajput H, Guin JP, Varshney L, Dhir A. 2019. Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater. Chem Engin J. 370:595–605. doi:10.1016/j.cej.2019.03.256.
  • Da Silva AK. 2012. Sterilization by gamma irradiation. Gamma radiation. 9:172–202.
  • Denich TJ, Beaudette LA, Lee H, Trevors JT. 2003. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods. 52(2):149–182. doi:10.1016/S0167-7012(02)00155-0.
  • Dussault D, Caillet S, Le Tien C, Lacroix M. 2009. Effect of γ‐irradiation on membrane fatty acids and peptidoglycan’s muropeptides of Pantoea agglomerans, a plant pathogen. J Appl Microbiol. 106(3):1033–1040. doi:10.1111/j.1365-2672.2008.04070.x.
  • Dussault D, Caillet S, Tien CL, Lacroix M. 2008. Carotenoids’ influence on radio tolerance of Pantoea agglomerans, a plant pathogen. Lett Appl Microbiol. 47(3):208–213. doi:10.1111/j.1472-765X.2008.02410.x.
  • Eberlein C, Baumgarten T, Starke S, Heipieper HJ. 2018. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl Microbiol Biotechnol. 102(6):2583–2593. doi:10.1007/s00253-018-8832-9.
  • Fernandes Â, Barreira JC, Antonio AL, Oliveira MBP, Martins A, Ferreira IC. 2016. Extended use of gamma irradiation in wild mushrooms conservation: validation of 2 kGy dose to preserve their chemical characteristics. LWT-Food Science and Technology. 67:99–105. doi:10.1016/j.lwt.2015.11.038.
  • Fojt L, Klapetek P, Strasak L, Vetterl V. 2009. 50 Hz magnetic field effect on the morphology of bacteria. Micron. 40(8):918–922. doi:10.1016/j.micron.2009.06.009.
  • Gamalero E, Bona E, Todeschini V, Lingua G. 2020. Saline and arid soils: impact on bacteria, plants, and their interaction. Biology. 9(6):116. doi:10.3390/biology9060116.
  • Guan N, Long L. 2020. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 104(1):51–65. doi:10.1007/s00253-019-10226-1.
  • Heil CS, Wehrheim SS, Paithankar KS, Grininger M. 2019. Fatty acid biosynthesis: chain‐length regulation and control. ChemBiochem. 20(18):2298–2321. doi:10.1002/cbic.201800809.
  • Imlay JA. 2003. Pathways of oxidative damage. Annu Rev Microbiol. 57(1):395–418. doi:10.1146/annurev.micro.57.030502.090938.
  • Joaquim IG, Nobuhiko H, Satoru T, Takeo H. 1994. Effect of UV-B radiation on the fatty acid composition of the marine phytoplankter Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser. 114:259–274. doi:10.3354/meps114259
  • Katarína D, Slavomíra M, Hana D, Katarína L, Hana H. 2018. The adaptation mechanisms of bacteria applied in bioremediation of hydrophobic toxic environmental pollutants: how indigenous and introduced bacteria can respond to persistent organic pollutants-induced stress? In Lazinica, Alex(ed), Persistent organic pollutants. IntechOpen.
  • Kayhan H, Koca S, Özdemir M, Dayanir B, Söylemez B, Özsunar Y. 2019. Investigation of potential genotoxic effects of magnetic field used in imaging. Meandros Medical and Dental J. 20(1):57. doi:10.4274/meandros.galenos.2017.99608.
  • Khefach S, Abdelwaheb C, Maalej L, Gottardi D, Kloula Ben Ghorbal S, Vannini L, Guerzoni ME, Hassen A. 2014. Survival and fatty acid composition of UV-C treated Staphylococcus aureus. Ann Microbiol. doi:10.1007/s13213-014-0855-6.
  • Kloula Ben Ghorbal S, Abdelwahed Mehri I, Werhani R, Chatti A. 2022. Damage of the swarmer Pseudomonas soil isolate cell by UVc as revealed by transmission electron microscopy. Int J Environ Health Res. 1:13. doi:10.1080/09603123.2022.2068511.
  • Kloula Ben Ghorbal S, Chatti A, Sethom MM, Maalej L, Mihoub M, Kefacha S, Feki M, Landoulsi A, Hassen A. 2013. Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations. Curr Microbiol. 67(1):112–117. doi:https://doi.org/10.1007/s00284-013-0342-5.
  • Kloula Ben Ghorbal S, Chourabi K, Maalej L, Ammar Aouatef AB, Ouzari H-I, Hassen A, Jaafoura H, Chatti A. 2019. Pseudomonas aeruginosa swarmer cells adaptation towards UVc radiations. Front Microbiol. 10:556. doi:10.3389/fmicb.2019.00556.
  • Kloula Ben Ghorbal S, Mâalej L, Landoulsi A, Hassen A, Feki M, Chatti A. 2021. Phospholipid alterations in Pseudomonas swarmer cells from inoculums at different stages of growth. J of New Sciences. 84 .3:4848_55.
  • Koyiloth M, Gummadi SN. 2022. Regulation and functions of membrane lipids: insights from caenorhabditis elegans. BBA Advances. 2:100043. doi:https://doi.org/10.1016/j.bbadva.2022.100043.
  • Kram KE, Henderson AL, Finkel SE, Lin X. 2020. Escherichia coli has a unique transcriptional program in long-term stationary phase allowing identification of genes important for survival. Msystems. 5(4):e00364–20. doi:10.1128/mSystems.00364-20.
  • Li J, Wang J, Hou S, Huang Y, Chen H, Sun Z, Chen D. 2020. Exposure to bisphenol analogues interrupts growth, proliferation, and fatty acid compositions of protozoa Tetrahymena thermophila. J Hazard Mater. 395:122643. doi:10.1016/j.jhazmat.2020.122643.
  • Lyu F, Gao F, Wei Q, Liu L. 2017. Changes of membrane fatty acids and proteins of Shewanella putrefaciens treated with cinnamon oil and gamma irradiation. Bioresour Bioprocess. 4(1):10. doi:10.1186/s40643-017-0140-1.
  • Maalej L, Chatti A, Khefacha S, Salma K, David G, Vannini L, Elizabetta GM, Hassen A. 2013. UV-C pre-adaptation of Salmonella: effect on cell morphology and membrane fatty acids composition. World J Microbiol Biotechnol. 30(3):925–930. doi:https://doi.org/10.1007/s11274-013-1510-2.
  • Mbye MM, Synan ABF, Reyad SE KA, Tareq OM, Anas OA, Turner MS, Shah NP, Ayyash MM. 2020. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Comprehensive reviews in food science and food safety. Compr Rev Food Sci Food Saf. 19(3):1110–1124. doi:10.1111/1541-4337.12554.
  • Mihoub M, MayA E, Aloui A, Chatti A, Landoulsi A. 2012. Effects of static magnetic fields on growth and membrane lipid composition of Salmonella typhimurium wild-type and dam mutant strains. Int J Food Microbiol. 157(2):259–266. doi:10.1016/j.ijfoodmicro.2012.05.017.
  • Miller DJ, Zhang YM, Subramanian C, Rock CO, White SW. 2010. Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nature structural & molecular biology. 17(8):971–975. doi:10.1038/nsmb.1847.
  • Morales M, Aflalo C, Bernard O. 2021. Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy. 150:106108. doi:10.1016/j.biombioe.2021.106108.
  • Nahon S, Charles F, Lantoine F, Vétion G, Escoubeyrou K, Desmalades M, Pruski AM. 2010. Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom Skeletonema costatum. J Exp Mar Bio Ecol. 383(2):164–170. doi:10.1016/j.jembe.2009.12.006.
  • Nowak A, Żur-Pińska J, Piński A, Pacek G, Mrozik A. 2021. Adaptation of phenol-degrading Pseudomonas putida KB3 to suboptimal growth condition: a focus on degradative rate, membrane properties and expression of xylE and cfaB genes. Ecotoxicol Environ Saf. 221:112431. doi:10.1016/j.ecoenv.2021.112431.
  • Ou Yun L, Xin-An Zeng L, Charles S, Zhong H. 2016. Effect of pulsed electric field on membrane lipids and oxidative injury of Salmonella typhimurium. Int J Mol Sci. 17(8):1374. doi:10.3390/ijms17081374.
  • Pagán R, Mackey B. 2000. Relationship between membrane damage and cell death in pressure-treated escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol. 66(7):2829–2834. doi:10.1128/AEM.66.7.2829-2834.2000.
  • Pamplona R, Barja G, Portero‐otín M. 2002. Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous‐longevity adaptation? Annals of the New York Academy of Sciences 959 1. 959(1):475–490. doi:https://doi.org/10.1111/j.1749-6632.2002.tb02118.x.
  • Polidori E, Zeppa S, Potenza L, Martinelli C, Colombo E, Casadei L, Agostini D, Sestili P, Stocchi V. 2012. Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field. Bioelectromagnetics. 33(1):65–74. doi:https://doi.org/10.1002/bem.20686.
  • Potenza C, Aleman L, Sengupta-Gopalan C. 2004. Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. Vitro Cell Dev Biol Plant. 40(1):1–22. doi:10.1079/IVP2003477.
  • Pulingam T, Thong KL, Ali ME, Appaturi JN, Dinshaw IJ, Ong ZY, Leo BF. 2019. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf B Biointerfaces. 181:6–15. doi:10.1016/j.colsurfb.2019.05.023.
  • Qi Y, Liu H, Chen X, Liu L. 2019. Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng. 53:24–34. doi:https://doi.org/10.1016/j.ymben.2018.12.010.
  • Quan VM, Li B, Sukyai P. 2020. Bacterial cellulose modification using static magnetic field. Cellulose. 27(10):5581–5596. doi:10.1007/s10570-020-03159-w.
  • Rastogi RP, Sinha RP, Moh SH, Lee TK, Kottuparambil S, Kim Y-J, Rhee J-S, Choi E-M, Brown MT, Häder D-P, et al. 2014. Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B. 141:154–169. doi:10.1016/j.jphotobiol.2014.09.020.
  • Roy B, Suresh PK, Chandrasekaran N, Mukherjee A. 2020. UVB pre-irradiation of titanium dioxide nanoparticles is more detrimental to freshwater algae than UVA pre-irradiation. J of Environ Chemical Eng. 8(5):104076. doi:10.1016/j.jece.2020.104076.
  • Shah NS, Khan JA, Al-Muhtaseb H, Sayed M, Murtaza B, Khan HM. 2016. Synergistic effects of HSO5− in the gamma radiation driven process for the removal of chlorendic acid: a new alternative for water treatment. Chem Engin J. 306:512–521. doi:https://doi.org/10.1016/j.cej.2016.07.031.
  • Shigapova N, Torok Z, Balogh G, Goloubinoff P, Vigh L, Horvath I. 2005. Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem Biophys Res Commun. 328(4):1216–1223. doi:10.1016/j.bbrc.2005.01.081.
  • Song K, Mohseni M, Taghipour F. 2019. Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. Water Res. 163:114875. doi:10.1016/j.watres.2019.114875.
  • Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2022. Physical properties of the bacterial outer membrane. Nat Rev Microbiol. 20(4):236–248. doi:10.1038/s41579-021-00638-0.
  • Tatzer V, Zellnig G, Kohlwein SD, Schneiter R, Riezman H. 2002. Lipid-dependent subcellular relocalization of the acyl chain desaturase in yeast. Mol Biol Cell. 13(12):4429–4442. doi:10.1091/mbc.e02-04-0196.
  • Thompson DH, Wong KF, Humphry-Baker R, Wheeler JJ, Kim JM, Rananavare SB. 1992. Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: raman spectoscopy, 31P NMR, X-ray scattering, and electron microscopy. J Am Chem Soc. 114(23):9035–9042. doi:10.1021/ja00049a040.
  • Vosjan JH, Dohler G, Nieuwland G. 1990. Effect of UV-B irradiance on the ATP content of microorganisms of the Wed- dell Sea (Antarctica). Neth J Sea Res. 25(3):391–393. doi:10.1016/0077-7579(90)90046-J.
  • Yatvin MB, Gipp JJ, Klessig DR, Dennis WH. 1986. Hyperthermic sensitivity and growth stage in Escherichia coli. Radiat Res. 106(1):78–88. doi:10.2307/3576563.
  • Zhang YM, Rock CO. 2009. Transcriptional regulation in bacterial membrane lipid synthesis. J Lipid Research. 50:115–119. doi:10.1194/jlr.R800046-JLR200.
  • Zhang W, Tao Y, Wu M, Xin F, Dong W, Zhou J, Gu J, Ma J, Jiang M. 2020. Adaptive evolution improves acid tolerance and succinic acid production in Actinobacillus succinogenes. Process Biochem. 98:76–82. doi:https://doi.org/10.1016/j.procbio.2020.08.003.
  • Zhao D, Zeng XA, Sun DW, Liu D. 2014. Effects of pulsed electric field treatment on (+) -catechin–acetaldehyde condensation. Innov Food Sci Emerg. 20:100–105. doi:10.1016/j.ifset.2013.07.007.
  • Zhong Z, Liu S, Han S, Li Y, Tao M, Liu A, He Q, Chen S, Dufresne C, Zhu W, et al. 2021. Integrative omic analysis reveals the improvement of alkaloid accumulation by ultraviolet-B radiation and its upstream regulation in Catharanthus roseus. Ind Crops Prod. 166:113448. doi:https://doi.org/10.1016/j.indcrop.2021.113448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.