157
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The role of thioredoxin and glutathione systems in arsenic-induced liver injury in rats under glutathione depletion

ORCID Icon, , , , &
Pages 547-563 | Received 28 Sep 2022, Accepted 12 Dec 2022, Published online: 18 Dec 2022

References

  • Aoyama K, Nakaki T. 2015. Glutathione in cellular redox homeostasis: association with the excitatory amino acid carrier 1 (EAAC1). Molecules. 20(5):8742–8758. doi:10.3390/molecules20058742.
  • Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, Ghezzi P. 2002. Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A. 99(15):9745–9749. doi:10.1073/pnas.152168599.
  • Domingo-Relloso A, Makhani K, Riffo-Campos AL, Tellez-Plaza M, Klein KO, Subedi P, Zhao J, Moon KA, Bozack AK, Haack K, et al. 2022. Arsenic exposure, blood DNA methylation, and cardiovascular disease. Circ Res. 131(2):e51–69. doi:10.1161/CIRCRESAHA.122.320991.
  • Du Y, Zhang H, Lu J, Holmgren A. 2012. Glutathione and glutaredoxin act as a backup of human thioredoxin reductase 1 to reduce thioredoxin 1 preventing cell death by aurothioglucose. J Biol Chem. 287(45):38210–38219. doi:10.1074/jbc.M112.392225.
  • Dubey AK, Kumar N, Sahu N, Verma PK, Chakrabarty D, Behera SK, Mallick S. 2016. Response of two rice cultivars differing in their sensitivity towards arsenic, differs in their expression of glutaredoxin and glutathione S transferase genes and antioxidant usage. Ecotoxicol Environ Saf. 124:393–405. doi:10.1016/j.ecoenv.2015.10.017.
  • Farzanegi P, Dana A, Ebrahimpoor Z, Asadi M, Azarbayjani MA. 2019. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation. Eur J Sport Sci. 19(7):994–1003. doi:10.1080/17461391.2019.1571114.
  • G Bardallo R, Panisello-Roselló A, Sanchez-Nuno S, Alva N, Roselló-Catafau J, Carbonell T. 2022. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 289(18):5463–5479. doi:10.1111/febs.16336.
  • García-Chávez E, Jiménez I, Segura B, Del Razo LM. 2006. Lipid oxidative damage and distribution of inorganic arsenic and its metabolites in the rat nervous system after arsenite exposure: influence of alpha tocopherol supplementation. Neurotoxicology. 27:1024–1031. doi:10.1016/j.neuro.2006.05.001.
  • Gora RH, Baxla SL, Kerketta P, Patnaik S, Roy BK. 2014. Hepatoprotective activity of Tephrosia purpurea against arsenic induced toxicity in rats. Indian J Pharmacol. 46(2):197–200. doi:10.4103/0253-7613.129317.
  • Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, Ilievski V, Levy D, Siddique AB, Parvez F, et al. 2013. Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect. 121(9):1068–1074. doi:10.1289/ehp.1205727.
  • Han B, Yang Y, Tang L, Yang Q, Xie R. 2021. Roles of SET7/9 and LSD1 in the pathogenesis of arsenic-induced hepatocyte apoptosis. J Clin Transl Hepatol. 9(3):364–372. doi:10.14218/JCTH.2020.00185.
  • Hansen JM, Zhang H, Jones DP. 2006. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med. 40(1):138–145. doi:10.1016/j.freeradbiomed.2005.09.023.
  • Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y. 2020. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 10(2):240. doi:10.3390/biom10020240.
  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M. 2011. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 31(2):95–107. doi:10.1002/jat.1649.
  • Karimpour S, Lou J, Lin LL, Rene LM, Lagunas L, Ma X, Karra S, Bradbury CM, Markovina S, Goswami PC, et al. 2002. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene. 21(41):6317–6327. doi:10.1038/sj.onc.1205749.
  • Kotyzová D, Bludovská M, Eybl V. 2013. Differential influences of various arsenic compounds on antioxidant defense system in liver and kidney of rats. Environ Toxicol Pharmacol. 36(3):1015–1021. doi:10.1016/j.etap.2013.09.003.
  • Li J, Duan X, Dong D, Zhang Y, Zhao L, Li W, Chen J, Sun G, Li B. 2017. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite. J Trace Elem Med Biol. 43:15–22. doi:10.1016/j.jtemb.2016.10.002.
  • Li Y, Gao Y, Zhao L, Wei Y, Feng H, Wang C, Wei W, Ding Y, Sun D. 2012. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water. Toxicol Appl Pharmacol. 259(1):124–132. doi:10.1016/j.taap.2011.12.016.
  • Li Y, Zhang Y, Gao Y, Zhang W, Cui X, Liu J, Wei Y. 2018. Arsenic induces thioredoxin 1 and apoptosis in human liver HHL-5 cells. Biol Trace Elem Res. 181(2):234–241. doi:10.1007/s12011-017-1052-9.
  • Lillig CH, Berndt C, Holmgren A. 2008. Glutaredoxin systems. Biochim Biophys Acta. 1780(11):1304–1317. doi:10.1016/j.bbagen.2008.06.003.
  • Liu T, Sun L, Zhang Y, Wang Y, Zheng J. 2022. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol. 36(1):e22942. doi:10.1002/jbt.22942.
  • Lou Q, Zhang M, Zhang K, Liu X, Zhang Z, Zhang X, Yang Y, Gao Y. 2022. Arsenic exposure elevated ROS promotes energy metabolic reprogramming with enhanced AKT-dependent HK2 expression. Sci Total Environ. 836:155691. doi:10.1016/j.scitotenv.2022.155691.
  • Lu J, Chew EH, Holmgren A. 2007. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci U S A. 104(30):12288–12293. doi:10.1073/pnas.0701549104.
  • Lu J, Yu K, Fan S, Liu W, Dong Z, Li J, Wang X, Hai X, Zhou J. 2019. Influence of AS3MT polymorphisms on arsenic metabolism and liver injury in APL patients treated with arsenic trioxide. Toxicol Appl Pharmacol. 379:114687. doi:10.1016/j.taap.2019.114687.
  • Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. 2018. Targeting oxidative stress for the treatment of liver fibrosis. Rev Physiol Biochem Pharmacol. 175:71–102. doi:10.1007/112-2018-10.
  • Ma Y, Qin Y, Zheng B, Zhang L, Zhao Y. 2016. Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study. Environ Sci Pollut Res Int. 23(2):1381–1390. doi:10.1007/s11356-015-5166-3.
  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. 2008. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal. 10(11):1941–1988. doi:10.1089/ars.2008.2089.
  • Miller CG, Schmidt EE. 2019. Disulfide reductase systems in liver. Br J Pharmacol. 176(4):532–543. doi:10.1111/bph.14498.
  • Morgan B, Ezeriņa D, Amoako TN, Riemer J, Seedorf M, Dick TP. 2013. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol. 9(2):119–125. doi:10.1038/nchembio.1142.
  • Ouyang Y, Peng Y, Li J, Holmgren A, Lu J. 2018. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics. 10(2):218–228. doi:10.1039/c7mt00327g.
  • Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. 2021. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere. 262:128350. doi:10.1016/j.chemosphere.2020.128350.
  • Park WH. 2020. Upregulation of thioredoxin and its reductase attenuates arsenic trioxide‑induced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress. Oncol Rep. 43(1):358–367. doi:10.3892/or.2019.7414.
  • Prigge JR, Eriksson S, Iverson SV, Meade TA, Capecchi MR, Arnér ES, Schmidt EE. 2012. Hepatocyte DNA replication in growing liver requires either glutathione or a single allele of txnrd1. Free Radic Biol Med. 52(4):803–810. doi:10.1016/j.freeradbiomed.2011.11.025.
  • Qin J, Yang Y, Velyvis A, Gronenborn A. 2000. Molecular views of redox regulation: three-dimensional structures of redox regulatory proteins and protein complexes. Antioxid Redox Signal. 2(4):827–840. doi:10.1089/ars.2000.2.4-827.
  • Rahaman MS, Akter M, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. 2020. Investigating the protective actions of D-pinitol against arsenic-induced toxicity in PC12 cells and the underlying mechanism. Environ Toxicol Pharmacol. 74:103302. doi:10.1016/j.etap.2019.103302.
  • Rahaman MS, Rahman MM, Mise N, Sikder MT, Ichihara G, Uddin MK, Kurasaki M, Ichihara S. 2021. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut. 289:117940. doi:10.1016/j.envpol.2021.117940.
  • Ren X. 2017. Thioredoxin and glutaredoxin systems under oxidative and nitrosative stress. Stockholm: Karolinska Institutet.
  • Renu K, Saravanan A, Elangovan A, Ramesh S, Annamalai S, Namachivayam A, Abel P, Madhyastha H, Madhyastha R, Maruyama M, et al. 2020. An appraisal on molecular and biochemical signalling cascades during arsenic-induced hepatotoxicity. Life Sci. 260:118438. doi:10.1016/j.lfs.2020.118438.
  • Rodríguez VM, Del Razo LM, Limón-Pacheco JH, Giordano M, Sánchez-Peña LC, Uribe-Querol E, Gutiérrez-Ospina G, Gonsebatt ME. 2005. Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver. Toxicol Sci. 84(1):157–166. doi:10.1093/toxsci/kfi057.
  • Saha SS, Ghosh M. 2009. Comparative study of antioxidant activity of alpha-eleostearic acid and punicic acid against oxidative stress generated by sodium arsenite. Food Chem Toxicol. 47(10):2551–2556. doi:10.1016/j.fct.2009.07.012.
  • Saha SS, Ghosh M. 2011. Antioxidant effect of vegetable oils containing conjugated linolenic acid isomers against induced tissue lipid peroxidation and inflammation in rat model. Chem Biol Interact. 190(2–3):109–120. doi:10.1016/j.cbi.2011.02.030.
  • Santra A, Das Gupta J, De BK, Roy B, Guha Mazumder DN. 1999. Hepatic manifestations in chronic arsenic toxicity. Indian J Gastroenterol. 18(4):152–155.
  • Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME. 2020. Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci. 14:17. doi:10.3389/fncel.2020.00017.
  • Smith IC, Vigna C, Levy AS, Denniss SG, Rush JW, Tupling AR. 2015. The effects of buthionine sulfoximine treatment on diaphragm contractility and SERCA pump function in adult and middle aged rats. Physiol Rep. 3(9):e12547. doi:10.14814/phy2.12547.
  • Souri Z, Karimi N, de Oliveira LM. 2018. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environ Technol. 39(10):1316–1327. doi:10.1080/09593330.2017.1329349.
  • Ströher E, Millar AH. 2012. The biological roles of glutaredoxins. Biochem J. 446(3):333–348. doi:10.1042/BJ20112131.
  • Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG. 2010. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem. 285(9):6118–6126. doi:10.1074/jbc.M109.062844.
  • Vlamis-Gardikas A, Holmgren A. 2002. Thioredoxin and glutaredoxin isoforms. Methods Enzymol. 347:286–296. doi:10.1016/s0076-6879(02)47028-0.
  • Xu M, Rui D, Yan Y, Xu S, Niu Q, Feng G, Wang Y, Li S, Jing M. 2017. Oxidative damage induced by arsenic in mice or rats: a systematic review and meta-analysis. Biol Trace Elem Res. 176(1):154–175. doi:10.1007/s12011-016-0810-4.
  • Zhang Z, Guo C, Jiang H, Han B, Wang X, Li S, Lv Y, Lv Z, Zhu Y. 2020. Inflammation response after the cessation of chronic arsenic exposure and post-treatment of natural astaxanthin in liver: potential role of cytokine-mediated cell-cell interactions. Food Funct. 11(10):9252–9262. doi:10.1039/d0fo01223h.
  • Zhang LB, Tang L, Ying SH, Feng MG. 2016. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana. Appl Microbiol Biotechnol. 100(13):5907–5917. doi:10.1007/s00253-016-7420-0.
  • Zhong G, Wan F, Yan H, Ning Z, Wang C, Li Y, Pan J, Tang Z, Yang Z, Huang R, et al. 2020. Methionine sulfoxide reductases are related to arsenic trioxide-induced oxidative stress in mouse liver. Biol Trace Elem Res. 195(2):535–543. doi:10.1007/s12011-019-01881-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.