253
Views
4
CrossRef citations to date
0
Altmetric
Review Article

The effect of TiO2 nanoparticles on bacterial growth: the effect of particle size and their structure – a systematic review

&
Pages 697-707 | Received 03 Nov 2022, Accepted 26 Dec 2022, Published online: 02 Jan 2023

References

  • Abu-Dalo M, Jaradat A, Albiss BA, Al-Rawashdeh NAF. 2019. Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. J Environ Chem Eng. 7(5):103370. doi:10.1016/j.jece.2019.103370.
  • Ahmadpour Kermani S, Salari S, Ghasemi Nejad Almani P. 2021. Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: in vitro evaluation. J Clin Lab Anal. 35(1):e23577. doi:https://doi.org/10.1002/jcla.23577.
  • Akhtar S, Shahzad K, Mushtaq S, Ali I, Rafe MH, Fazal-Ul-Karim SM. 2019. Antibacterial and antiviral potential of colloidal titanium dioxide (TiO2) nanoparticles suitable for biological applications. Mater Res Express. 6(10):105409. doi:https://doi.org/10.1088/2053-1591/ab3b27.
  • Alavi M, Karimi N. 2018. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artif Cells, Nanomed Biotechnol. 46(sup3):399–413. doi:https://doi.org/10.1080/21691401.2018.1496923.
  • Ali I, Alharbi OML, ALOthman ZA, Alwarthan A, Al-Mohaimeed AM. 2019. Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int J Biol Macromol. 132.244–253. doi:10.1016/j.ijbiomac.2019.03.211.
  • Ali I, Alharbi OML, Alothman ZA, Badjah AY. 2018. Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem Photobiol. 94(5):935–941. doi:10.1111/php.12937.
  • Ali I, Basheer AA, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, Pershin V, Kuznetsov D, Galunin E, Grachev V, et al. 2019. Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq. 279.251–266. doi:10.1016/j.molliq.2019.01.113.
  • Ali I, Burakov AE, Melezhik AV, Babkin AV, Burakova IV, Neskoromnaya EA, Galunin EV, Tkachev AG, Kuznetsov DV. 2019. Removal of copper(II) and Zinc(II) Ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism, thermodynamics and mechanism. ChemistrySelect. 4(43):12708–12718. doi:10.1002/slct.201902657.
  • Alizadeh-Sani M, Hamishehkar H, Khezerlou A, Maleki M, Azizi-Lalabadi M, Bagheri V, Safaei P, Azimi T, Hashemi M, Ehsani A. 2020. Kinetics analysis and susceptibility coefficient of the pathogenic bacteria by titanium dioxide and zinc oxide nanoparticles. Adv Pharm Bull. 10(1):56–64. doi:https://doi.org/10.15171/apb.2020.007.
  • Al-Sa’ady AT, Hussein FH. 2020. Nanomedical applications of titanium dioxide nanoparticles as antibacterial agent against multi-drug resistant Streptococcus pneumoniae. doi:10.31838/srp.2020.10.11.
  • Amna T, Shamshi Hassan M, Pandurangan M, Khil M-S, Lee H-K, Hwang IH. 2013. Characterization and potent bactericidal effect of cobalt doped titanium dioxide nanofibers. Ceram Int. 39(3):3189–3193. doi:10.1016/j.ceramint.2012.10.003.
  • Ansari MA, Albetran HM, Alheshibri MH, Timoumi A, Algarou NA, Akhtar S, Slimani Y, Almessiere MA, Alahmari FS, Baykal A, et al. 2020. Synthesis of electrospun TiO(2) nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria. Antibiot, (Basel, Switzerland). 9(9):572. doi:https://doi.org/10.3390/antibiotics9090572.
  • Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M. 2019. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. 9(1):17439. doi:https://doi.org/10.1038/s41598-019-54025-0.
  • Basheer AA. 2020. Advances in the smart materials applications in the aerospace industries, Aircr. Eng Aerosp Technol. 92(7):1027–1035. doi:https://doi.org/10.1108/AEAT-02-2020-0040.
  • Boczkaj G, Fernandes A. 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J. 320.608–633. doi:10.1016/j.cej.2017.03.084.
  • Bokare A, Singh H, Pai M, Nair R, Sabharwal S, Athawale AA. 2015. Hydrothermal synthesis of Ag@TiO2–Fe3O4 nanocomposites using sonochemically activated precursors: magnetic, photocatalytic and antibacterial properties. Mater Res Express. 1(4):046111. doi:10.1088/2053-1591/1/4/046111.
  • Boudghene-Guerriche A, Chaker H, Aissaoui M, Chikhi I, Saidi-Bendahou K, Moukhtari-Soulimane N, Fourmentin S. 2020. Evaluation of antibacterial and antioxidant activities of silver-decorated TiO2 nanoparticles. ChemistrySelect. 5(36):11078–11084. doi:https://doi.org/10.1002/slct.202002734.
  • Chegeni M, Pour SK, Faraji Dizaji B. 2019. Synthesis and characterization of novel antibacterial Sol-gel derived TiO2/Zn2TiO4/Ag nanocomposite as an active agent in Sunscreens. Ceram Int. 45(18):24413–24418. doi:10.1016/j.ceramint.2019.08.163.
  • Chen Y, Deng Y, Pu Y, Tang B, Su Y, Tang J. 2016. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity, mater. Sci Eng C. 65:27–32. doi: 10.1016/j.msec.2016.04.028.
  • Desai V, Kowshik M. 2013. Synthesis and characterization of fumaric acid functionalized AgCl/titania nanocomposite with enhanced antibacterial activity. J Nanosci Nanotechnol. 13(4):2826–2834. doi:https://doi.org/10.1166/jnn.2013.7370.
  • Deshmukh SP, Mullani SB, Koli VB, Patil SM, Kasabe PJ, Dandge PB, Pawar SA, Delekar SD. 2018. Ag nanoparticles connected to the surface of TiO2 electrostatically for antibacterial photoinactivation studies) electrostatically for antibacterial photoinactivation studies. Photochem Photobiol. 94(6):1249–1262. doi:https://doi.org/10.1111/php.12983.
  • Dhanasekar M, Jenefer V, Nambiar RB, Babu SG, Selvam SP, Neppolian B, Bhat SV. 2018. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films, Mater. Res Bull. 97.238–243. doi:10.1016/j.materresbull.2017.08.056.
  • Dutta T, Ghosh NN, Chattopadhyay AP, Das M. 2019. Chitosan encapsulated water-soluble silver bionanocomposite for size-dependent antibacterial activity. Nano-Struct Nano-Objects. 20:100393. doi:10.1016/j.nanoso.2019.100393.
  • El-Shazly AN, El-Sayyad GS, Hegazy AH, Hamza MA, Fathy RM, El Shenawy ET, Allam NK. 2021. Superior visible light antimicrobial performance of facet engineered cobalt doped TiO(2) mesocrystals in pathogenic bacterium and fungi. Sci Rep. 11(1):5609. doi:https://doi.org/10.1038/s41598-021-84989-x.
  • Guomei L, Kai W, Zuowan Z. 2006. Influence of doping on the antibacterial effect of TiO2 nanoparticles. https://www.scopus.com/inward/record.uri?eid=2-s2.0-35748984134&partnerID=40&md5=008719b802ce02927a1bee97bcf7c665.
  • Hassan MS, Amna T, Kim HY, Khil M-S. 2013. Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof, Compos. Part B Eng. 45(1):904–910. doi:10.1016/j.compositesb.2012.09.009.
  • Helmy ET, Abouellef EM, Soliman UA, Pan JH. 2021. Novel green synthesis of S-doped TiO(2) nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination. Chemosphere. 271.129524. doi:10.1016/j.chemosphere.2020.129524.
  • Hussain A, Oves M, Alajmi MF, Hussain I, Amir S, Ahmed J, Rehman MT, El-Seedi HR, Ali I. 2019. Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv. 9(27):15357–15369. doi:https://doi.org/10.1039/c9ra01659g.
  • Ibrahem KH, Ali FA, Abdulla Sorchee SM, Abdulla Surchee SM, Hkeem Ibrahem K, Ali FA. 2020. Biosynthesis and characterization with antimicrobial activity of TiO2 nanoparticles using probiotic Bifidobacterium bifidum, Cell. Mol Biol (Noisy-Le-Grand). 66(7):111–117. doi:https://doi.org/10.14715/cmb/2020.66.7.17.
  • Jafari AJ, Kalantary RR, Esrafili A, Moslemzadeh M. 2021. Photo-catalytic degradation of bisphenol-a from aqueous solutions using GF/Fe-TiO2-CQD hybrid composite. J Environ Heal Sci Eng. 19(1):837–849. doi:https://doi.org/10.1007/s40201-021-00651-8.
  • Jalali SAH, Allafchian AR, Banifatemi SS, Ashrafi Tamai I. 2016. The antibacterial properties of Ag/TiO2 nanoparticles embedded in silane sol–gel matrix. J Taiwan Inst Chem Eng. 66.357–362. doi:10.1016/j.jtice.2016.06.011.
  • Khater MS, Kulkarni GR, Khater SS, Gholap H, Patil R. 2020. Study to elucidate effect of titanium dioxide nanoparticles on bacterial membrane potential and membrane permeability. Mater Res Express. 7(3):035005. doi:https://doi.org/10.1088/2053-1591/ab731a.
  • Konstantinova EA, Minnekhanov AA, Trusov GV, Kytin VG. 2020. Titania-based nanoheterostructured microspheres for prolonged visible-light-driven photocatalysis. Nanotechnology. 31(34):345207. doi:https://doi.org/10.1088/1361-6528/ab91f1.
  • Kowalska-Krochmal B, Dudek-Wicher R. 2021. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 10(2):1–21. doi:https://doi.org/10.3390/pathogens10020165.
  • Lavaee F, Faez K, Faez K, Hadi N, Modaresi F. 2016. Antimicrobial and antibiofilm activity of silver, titanium dioxide and iron nano particles. Am J Dent. 29(6):315–320.
  • Leudjo Taka A, Doyle BP, Carleschi E, Youmbi Fonkui T, Erasmus R, Fosso-Kankeu E, Pillay K, Mbianda XY. 2020. Spectroscopic characterization and antimicrobial activity of nanoparticle doped cyclodextrin polyurethane bionanosponge. Mater Sci Eng C. 115:111092. doi:https://doi.org/10.1016/j.msec.2020.111092.
  • Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. 2017. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep. 7(1):1–4. doi:https://doi.org/10.1038/s41598-017-09897-5.
  • Lin B, Luo Y, Teng Z, Zhang B, Zhou B, Wang Q. 2015. Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. Food Sci Technol. 63(2):1206–1213. doi:https://doi.org/10.1016/j.lwt.2015.04.049.
  • Lu Z, Rong K, Li J, Yang H, Chen R. 2013. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 24(6):1465–1471. doi:https://doi.org/10.1007/s10856-013-4894-5.
  • Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M. 2020. Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydr. Polym. 234.115835. doi:10.1016/j.carbpol.2020.115835.
  • Mohamed DS, El-Baky RMA, Sandle T, Mandour SA, Ahmed EF. 2020. Antimicrobial activity of silver-treated bacteria against other multi-drug resistant pathogens in their environment, Antibiotics. Antibiotics. 9(4):181. doi:https://doi.org/10.3390/antibiotics9040181.
  • Ozturk I, Tunçel A, Ince M, Ocakoglu K, Hoşgör-Limoncu M, Yurt F. 2018. Antibacterial properties of subphthalocyanine and subphthalocyanine-TiO2 nanoparticles on Staphylococcus aureus and Escherichia coli. J Porphyr Phthalocyanines. 22(12):1099–1105. doi:https://doi.org/10.1142/S1088424618501122.
  • Raghupathi KR, Koodali RT, Manna AC. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27(7):4020–4028. doi:10.1021/la104825u.
  • Rajkumari J, Magdalane CM, Siddhardha B, Madhavan J, Ramalingam G, Al-Dhabi NA, Arasu MV, Ghilan AKM, Duraipandiayan V, Kaviyarasu K. 2019. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J Photochem Photobiol B. 201.111667. doi:10.1016/j.jphotobiol.2019.111667.
  • Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. 2016. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 6(4):74. doi:https://doi.org/10.3390/nano6040074.
  • Rezaei Kalantary R, Jaafarzadeh N, Rezvani Ghalhari M, Hesami Arani M. 2021. Cancer risk assessment of polycyclic aromatic hydrocarbons in the soil and sediments of Iran: a systematic review study. Rev Environ Health. 37(4):597–612. doi:10.1515/reveh-2021-0080.
  • Rezaei Kalantary R, Jaffarzadeh N, Rezapour M, Hesami Arani M. 2020. Association between exposure to polycyclic aromatic hydrocarbons and attention deficit hyperactivity disorder in children: a systematic review and meta-analysis. Environ Sci Pollut Res. 27(11):11531–11540. doi:https://doi.org/10.1007/s11356-020-08134-3.
  • Sanches PL, Geaquinto LRDO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. 2020. Toxicity evaluation of TiO2 nanoparticles on the 3D skin model: a systematic review. Front Bioeng Biotechnol. 8. doi:https://doi.org/10.3389/fbioe.2020.00575.
  • Sangshetti JN, Dharmadhikari PP, Chouthe RS, Fatema B, Lad V, Karande V, Darandale SN, Shinde DB. 2013. Microwave assisted nano (ZnO–TiO2) catalyzed synthesis of some new 4,5,6,7-tetrahydro-6-((5-substituted-1,3,4-oxadiazol-2-yl)methyl)thieno[2,3-c]pyridine as antimicrobial agents. Bioorg Med Chem Lett. 23(7):2250–2253. doi:https://doi.org/10.1016/j.bmcl.2013.01.041.
  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. 1996. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries. J Chem Eng Japan. 29(2):251–256. doi:https://doi.org/10.1252/jcej.29.251.
  • Schreglmann SR, Krauss JK, Chang JW, Bhatia KP, Kägi G. 2017. Functional lesional neurosurgery for tremor—a protocol for a systematic review and meta-analysis. BMJ Open. 7(5):e015409. doi:https://doi.org/10.1136/bmjopen-2016-015409.
  • She B, Long J, Deng Y, Wan X, Zhu K, Tang J. 2015. Facile preparation of Cu/TiO2 nanocomposite via photocatalysis and their antibacterial performance. Key Eng Mater. 645-646:1314–1319. doi:10.4028/scientific.net/KEM.645-646.1314.
  • Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H, Yang Y, Hou W, Hu X, Jiang Z. 2012. Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol. 228.210–218. doi:10.1016/j.powtec.2012.05.018.
  • Tahir K, Ahmad A, Li B, Nazir S, Khan AU, Nasir T, Khan ZUH, Naz R, Raza M. 2016. Visible light photo catalytic inactivation of bacteria and photo degradation of methylene blue with Ag/TiO2 nanocomposite prepared by a novel method. J Photochem Photobiol B. 162.189–198. doi:10.1016/j.jphotobiol.2016.06.039.
  • Ullah K, Khan SA, Mannan A, Khan R, Murtaza G, Yameen MA. 2020. Enhancing the antibacterial activity of erythromycin with titanium dioxide nanoparticles against MRSA. Curr Pharm Biotechnol. 21(10):948–954. doi:https://doi.org/10.2174/1389201021666200128124142.
  • Vassallo J, Besinis A, Boden R, Handy RD. 2018. The minimum inhibitory concentration (MIC) assay with Escherichia coli: an early tier in the environmental hazard assessment of nanomaterials? Ecotoxicol Environ Saf. 162.633–646. doi:10.1016/j.ecoenv.2018.06.085.
  • Wang J, Ji Z, Shui Z, Wang X, Ding N, Li H. 2010. Inactivation of Escherichia Coli on titanium dioxide photocatalysis nanoparticles. Adv Mater Res. 96:99–104. doi:10.4028/scientific.net/AMR.96.99.
  • Wang Y, Wang Y, Su L, Luan Y, Du X, Zhang X. 2019. Effect of surface topology morphologies of silica nanocarriers on the loading of Ag nanoparticles and antibacterial performance. J Alloys Compd. 783.136–144. doi:10.1016/j.jallcom.2018.12.284.
  • Xuan X, Wang M, Manickam S, Boczkaj G, Yoon JY, Sun X. 2022. Metal-organic frameworks-based sensors for the detection of toxins in food: a critical mini-review on the applications and mechanisms. Front Bioeng Biotechnol. 10. doi:10.3389/fbioe.2022.906374.
  • Xu N, Cheng H, Xu J, Li F, Gao B, Li Z, Gao C, Huo K, Fu J, Xiong W. 2017. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo. Int J Nanomedicine. 12.731–743. doi:10.2147/IJN.S123648.
  • Yaşa I, Lkhagvajav N, Koizhaiganova M, Celik E, Sarı O. 2012. Assessment of antimicrobial activity of nanosized Ag doped TiO(2) colloids. World J Microbiol Biotechnol. 28(7):2531–2539. doi:https://doi.org/10.1007/s11274-012-1061-y.
  • Yousef A, Barakat NAM, Amna T, Al-Deyab SS, Hassan MS, Abdel-Hay A, Kim HY. 2012. Inactivation of pathogenic Klebsiella pneumoniae by CuO/TiO2 nanofibers: a multifunctional nanomaterial via one-step electrospinning. Ceram Int. 38(6):4525–4532. doi:10.1016/j.ceramint.2012.02.029.
  • Zafar N, Uzair B, Niazi MBK, Samin G, Bano A, Jamil N, Waqar-Un-Nisa SS, Sajjad S, Menaa F. 2021. Ciprofloxacin-loaded Ag/TiO2/CS nanohybrid against mastitis causing E. coli. Crystals. 11(3):319. doi:https://doi.org/10.3390/cryst11030319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.