632
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Toxicity and bioremediation of the lead: a critical review

ORCID Icon &
Pages 1879-1909 | Received 07 Oct 2022, Accepted 27 Dec 2022, Published online: 08 Jan 2023

References

  • Abadin H, Ashizawa A, Llados F, Stevens YW. 2007. Toxicological profile for lead. Agency for toxic substances and disease registry (ATSDR). U.S. Public Health Service. www.atsdr.cdc.gov/?wvsessionid=wv60fd8e3646bd40faac3e99ad72ddf175.
  • Abd El-Hameed MM, Abuarab ME, Mottaleb SA, El-Bahbohy RM, Bakeer GA. 2018. Comparative studies on growth and Pb (II) removal from aqueous solution by nostoc muscorum and anabaena variabilis. Ecotoxicol Environ Safe. 165:637–644. doi:10.1016/j.ecoenv.2018.08.103.
  • Abioye OP, Oyewole OA, Oyeleke SB, Adeyemi MO, Orukotan AA. 2018. Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Braz J Biol Sci. 5(9):25–32. doi:10.21472/bjbs.050903.
  • Addis W, Abebaw A, Pashikanti S. 2017. Determination of heavy metal concentration in soils used for cultivation of Allium sativum L. (garlic) in east gojjam zone, Amhara region, Ethiopia. Cogent Chem. 3(1):1419422. doi:10.1080/23312009.2017.1419422.
  • Ahluwalia SS, Goyal D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 98(12):2243–2257. doi:10.1016/j.biortech.2005.12.006.
  • Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R. 2020. Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. In: Bharagava RN, Saxena G, editors. Bioremediation of Industrial Waste for Environmental Safety. Berlin/Heidelberg,Germany: Springer; pp. 53–76.
  • Al-Mosawi ZHA, Ajanabi AOH, Al-Mamoori AMJ. 2022. Immobilize algae to removal copper and lead from aquatic ecosystem. Nat Volatiles Essent Oils. 9(1):850–860.
  • Al-Othman ZA. 2010. Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules. 15(10):7482–7497. doi:10.3390/molecules15107482.
  • Anastopoulos I, Kyzas GZ. 2015. Progress in batch biosorption of heavy metals onto algae. J Mol Liq. 209:77–86. doi:10.1016/j.molliq.2015.05.023.
  • Andjelkovic M, Djordjevic AB, Antonijevic E, Antonijevic B, Stanic B, Kotur-Stevuljevic J, Spasojevic-Kalimanovska V, Jovanovic M, Boricic N, Wallace N, et al. 2019. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 16(2):274. doi:10.3390/ijerph16020274.
  • Anjum MR, Madhu P, Reddy KP, Reddy PS. 2017. The protective effects of zinc in lead-induced testicular and epididymal toxicity in Wistar rats. Toxicol Ind Health. 33(3):265–276. doi:10.1177/0748233716637543.
  • Ariff AB, Mel M, Hasan MA, Karim MIA. 1999. The kinetics and mechanism of lead (II) biosorption by powderized Rhizopus Oligosporus. World J Microbiol Biotechnol. 15(2):291–298. doi:10.1023/A:1008995026987.
  • Arruti A, Fernández-Olmo I, Irabien A. 2010. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit. 12(7):1451–1458. doi:10.1039/b926740a.
  • Assi MA, Hezmee MNM, Haron AW, Sabri MYM, Rajion MA. 2016. The detrimental effects of lead on human and animal health. Vet World. 9(6):660–671. doi:10.14202/vetworld.2016.660-671.
  • ATSDR. 1992. Case studies in environmental medicine, lead toxicity. Agency for toxic substances and disease registry. Atlanta, GA: U.S. Department of Health and Human Services.
  • ATSDR. 1997. Toxicological profile for lead (update) draft for public comment. Agency for toxic substances and disease registry. Atlanta, GA: Public Health Service, U.S. Department of Health and Human Services.
  • ATSDR. 1998. Toxicological profile for lead. Agency for toxic substances and disease registry. Atlanta, GA: U.S. Department of Health and Human Services.
  • Banerjee G, Pandey S, Ray AK, Kumar R. 2015. Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut. 226(4):1–9. doi:10.1007/s11270-015-2359-9.
  • Bano A, Hussain J, Akbar A, Mehmood K, Anwar M, Hasni MS, Ullah S, Sajid S, Ali I. 2018. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere. 199:218–222. doi:10.1016/j.chemosphere.2018.02.043.
  • Barry PS. 1975. A comparison of concentrations of lead in human tissues. Occup Environ Med. 32(2):119–139. doi:10.1136/oem.32.2.119.
  • Bellinger DC. 2004. Lead. Pediatrics. 113(Supplement_3):1016–1022. doi:10.1542/peds.113.S3.1016.
  • Benedetti M, Vecchi V, Barera S, Dall’Osto L. 2018. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Factories. 17(1):1–18. doi:10.1186/s12934-018-1019-3.
  • Berglund ÅM, Ingvarsson PK, Danielsson H, Nyholm NEI. 2010. Lead exposure and biological effects in pied flycatchers (Ficedula Hypoleuca) before and after the closure of a lead mine in Northern Sweden. Environ Pollut. 158(5):1368–1375. doi:10.1016/j.envpol.2010.01.005.
  • Brent JA. 2006. A review of: “medical toxicology”. Clin Toxicol. 4(3):355. doi:10.1080/15563650600584733.
  • Buerger TT, Mirarchi RE, Lisano ME. 1986. Effects of lead shot ingestion on captive mourning dove survivability and reproduction. J Wildl Managt. 50(1):1–8. doi:10.2307/3801479.
  • Cai CX, Xu J, Deng NF, Dong XW, Tang H, Liang Y, Fan X, Li YZ. 2016. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization. Sci Rep. 6(1):1–12. doi:10.1038/srep36546.
  • Cao YR, Zhang XY, Deng JY, Zhao QQ, Xu H. 2012. Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella Radicata in liquid medium alleviated by microbial siderophores. World J Microbiol Biotechnol. 28(4):1727–1737. doi:10.1007/s11274-011-0983-0.
  • Carlisle JC, Dowling KC, Siegel DM, Alexeeff GV. 2009. A blood lead benchmark for assessing risks from childhood lead exposure. J Environ Sci Health A Tox Hazard Subst Environ Eng. 44(12):1200–1208. doi:10.1080/10934520903139829.
  • Carpenter JW, Pattee OH, Fritts SH, Rattner BA, Wiemeyer SN, Royle JA, Smith MR. 2003. Experimental lead poisoning in turkey vultures (Cathartes aura). J Wildl Dis. 39(1):96–104. doi:10.7589/0090-3558-39.1.96.
  • CDC. 1997. Adult blood lead epidemiology and surveillance United States fourth quarter 1996. Morb Mortal Wkly Rep. 46:358–359.
  • CDC. 2012. Low level lead exposure harms children: a renewed call for primary prevention. report of the advisory committee on childhood lead poisoning prevention of the centers for disease control and prevention.
  • Cephidian A, Makhdoumi A, Mashreghi M, Gharaie MM. 2016. Removal of anthropogenic lead pollutions by a potent Bacillus species AS2 isolated from geogenic contaminated site. Int J Environ Sci Technol. 13(9):2135–2142. doi:10.1007/s13762-016-1023-2.
  • Chakraborty N, Banerjee A, Pal R. 2011. Accumulation of lead by free and immobilized Cyanobacteria with special reference to accumulation factor and recovery. Bioresour Technol. 102(5):4191–4195. doi:10.1016/j.biortech.2010.12.028.
  • Chatterjee SK, Bhattacharjee I, Chandra G. 2010. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J Hazard Mater. 175(1–3):117–125. doi:10.1016/j.jhazmat.2009.09.136.
  • Chen H, Cutright TJ. 2003. Preliminary evaluation of microbially mediated precipitation of cadmium, chromium, and nickel by rhizosphere consortium. J Environ Eng. 129(1):4–9. doi:10.1061/(ASCE)0733-9372(2003)129:1(4).
  • Chen H, Pan SS. 2005. Bioremediation potential of Spirulina: toxicity and biosorption studies of lead. J Zhejiang Univ Sci B. 6(3):171. doi:10.1631/jzus.2005.B0171.
  • Cirik Y, Molu Bekci Z, Buyukates Y, Ak İ, Merdivan M. 2012. Heavy metals uptake from aqueous solutions using marine algae (Colpomenia Sinuosa): kinetics and isotherms. Chem Ecol. 28(5):469–480. doi:10.1080/02757540.2012.667084.
  • Cleveland LM, Minter ML, Cobb KA, Scott AA, German VF. 2008. Lead hazards for pregnant women and children: part 2: more can still be done to reduce the chance of exposure to lead in at-risk populations. Am J Nurs. 108(11):40–47. doi:10.1097/00000446-200811000-00025.
  • Coelho E, Reis TA, Cotrim M, Mullan TK, Correa B. 2020. Resistant fungi isolated from contaminated uranium mine in brazil shows a high capacity uptake uranium from water. Chemosphere. 248:126068. doi:10.1016/j.chemosphere.2020.126068.
  • Cory-Slechta DA. 1996. Legacy of lead exposure: consequences for the central nervous system. Otolaryngology–Head and Neck Surgery. 114(2):224–226. doi:10.1016/S0194-59989670171-7.
  • Cristani M, Naccari C, Nostro A, Pizzimenti A, Trombetta D, Pizzimenti F. 2012. Possible use of serratia marcescens in toxic metal biosorption (removal). Environ Sci Pollut Rese. 19(1):161–168. doi:10.1007/s11356-011-0539-8.
  • Crognale S, Annibale AD, Pesciaroli L, Stazi SR, Petruccioli M. 2017. Fungal community structure and as-resistant fungi in a decommissioned gold mine site. Front Microbiol. 8:2202. doi:10.3389/fmicb.2017.02202.
  • Dai QH, Bian XY, Li R, Jiang CB, Ge JM, Li BL, Ou J. 2019. Biosorption of lead (II) from aqueous solution by lactic acid bacteria. Water Sci Technol. 79(4):627–634. doi:10.2166/wst.2019.082.
  • Dai J, Cen F, Ji J, Zhang W, Xu H. 2012. Biosorption of lead (II) in aqueous solution by spent mushroom tricholoma lobayense. Water Environ Res. 84(4):291–298. doi:10.2175/106143012X13347678384404.
  • DalCorso G, Fasani E, Manara A, Visioli G, Furini A. 2019. Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. 20(14):3412. doi:10.3390/ijms20143412.
  • Dapul H, Laraque D. 2014. Lead poisoning in children. Adv Pediatr. 61(1):313–333. doi:10.1016/j.yapd.2014.04.004.
  • Davis JW, Libke KG, Watson DF, Bibb TL. 1976. Experimentally induced lead poisoning in goats: clinical observations and pathologic changes. Cornell Vet. 66(4):490–497.
  • Del-Aty AM, Ammar NS, Ghafar HHA, Ali RK. 2013. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena Sphaerica biomass. J Adv Res. 4(4):367–374. doi:10.1016/j.jare.2012.07.004.
  • Demayo A, Taylor MC, Taylor KW, Hodson PV, Hammond PB. 1982. Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. Crit Rev Environ Sci Technol. 12(4):257–305. doi:10.1080/10643388209381698.
  • Dhankhar R, Hooda A. 2011. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol. 32(5):467–491. doi:10.1080/09593330.2011.572922.
  • Douglas-Stroebel E, Hoffman DJ, Brewer GL, Sileo L. 2004. Effects of lead-contaminated sediment and nutrition on mallard duckling brain growth and biochemistry. Environ Pollut. 131(2):215–222. doi:10.1016/j.envpol.2004.02.002.
  • Duffus JH. 2002. Heavy metals-a meaningless term? Pure Appl Chem. 74(5): 793-80. doi:10.1351/pac200274050793.
  • Dusengemungu L, Kasali G, Gwanama C, Ouma KO. 2020. Recent advances in biosorption of copper and cobalt by filamentous fungi. Front Microbiol. 11:3285. doi:10.3389/fmicb.2020.582016.
  • Dwivedi S. 2012. Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol. 3(3):195–199.
  • Edens FW, Benton E, Bursian SJ, Morgan GW. 1976. Effect of dietary lead on reproductive performance in Japanese quail, Coturnix coturnix japonica. Toxicol Appl Pharmacol. 38(2):307–314. doi:10.1016/0041-008X(76)90137-X.
  • Elbagermi MA, Edwards HGM, Alajtal AI. 2012. Monitoring of heavy metal content in fruits and vegetables collected from production and market sites in the misurata area of libya. ISRN. 2012:1–5. Article ID 827645. doi:10.5402/2012/827645.
  • Elsanhoty RM, Al-Turki IA, Ramadan MF. 2016. Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Sci Technol. 74(3):625–638. doi:10.2166/wst.2016.255.
  • EPA. 1986. Air quality criteria for lead. N.C.: EPA-600/08-83/028aF-dF. Research Triangle ParkU.S. Environmental Protection Agency.
  • Ettinger AS, Rojo MMT, Amarasiriwardena C, Cossío TG, Peterson KE, Aro A, Hu H, Avila MH. 2004. Levels of lead in breast milk and their relation to maternal blood and bone lead levels at one month postpartum. Environ Health Perspect. 112(8):926–931. doi:10.1289/ehp.6615.
  • Everson J, Patterson CC. 1980. ”ULtra-clean” isotope diultion/mass spectrometic analyses for lead in human blood plasma indicated that most reported values are artificially high. Clin Chem. 26(11):1603–1607. doi:10.1093/clinchem/26.11.1603.
  • ExToxNet. 2000. Extension toxicology network. Cornell University. http://pmep.cce.cornell.edu/profiles/extoxnet/.
  • Fanning D. 1988. A mortality study of lead workers, 1926–1985. Arch Environ Health. 43(3):247–251. doi:10.1080/00039896.1988.9934942.
  • Fergusson JE. 1990. The heavy elements: chemistry, environmental impact and health effects. Oxford: Pergamon Press. doi:10.2134/jeq1991.00472425002000040028x.
  • Finkelstein ME, Gwiazda RH, Smith DR. 2003. Lead poisoning of seabirds: environmental risks from leaded paint at a decommissioned military base. Enviro Sci Technol. 37(15):3256–3260. doi:10.1021/es026272e.
  • Fisher IJ, Pain DJ, Thomas VG. 2006. A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv. 131(3):421–432. doi:10.1016/j.biocon.2006.02.018.
  • Fleming DEB, Chettle DR, Wetmur JG, Desnick RJ, Robin JP, Boulay D, Richard NS, Gordon CL, Webber CE. 1998. Effect of the delta-aminolevulinate dehydratase polymorphism on the accumulation of lead in bone and blood in lead smelter workers. Environ Res. 77(1):49–61. doi:10.1006/enrs.1997.3818.
  • Flora SJS. 2009. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2(4):191–206. doi:10.4161/oxim.2.4.9112.
  • Flora SJ. 2011. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 51(2):257–281. doi:10.1016/j.freeradbiomed.2011.04.008.
  • Flora G, Gupta D, Tiwari A. 2012. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 5(2):47–58. doi:10.2478/v10102-012-0009-2.
  • Fourest E, Canal C, Roux JC. 1994. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus Arrhizus, Mucor Miehei and Penicillium Chrysogenum): ph control and cationic activation. FEMS Microbiol Rev. 14(4):325–332. doi:10.1111/j.1574-6976.1994.tb00106.x.
  • Gabr RM, Hassan SHA, Shoreit AAM. 2008. Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegradation. 62(2):195–203. doi:10.1016/j.ibiod.2008.01.008.
  • Gadd GM. 1993. Interactions of fungi with toxic metals. New Phytol. 124(1):25–60. doi:10.1111/j.1469-8137.1993.tb03796.x.
  • Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. 2022. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA fungus. 13(1):1–20. doi:10.1186/s43008-022-00092-4.
  • Gasparik J, Venglarcik J, Slamecka J, Kropil R, Smehyl P, Kopecky J. 2012. Distribution of lead in selected organs and its effect on reproduction parameters of pheasants (Phasianus Colchicus) after an experimental per oral administration. J Environ Sci Health, Part A. 47(9):1267–1271. doi:10.1080/10934529.2012.672127.
  • GC. 2021. Lead facts. The official website of the government of Canada. www.nrcan.gc.ca/our-natural-resources/minerals-mining/minerals-metalsfacts/leadfacts/20518.
  • Gehrhus B, Hitchcock PB, Lappert MF. 1997. New reactions of a silylene: insertion into M-N bonds of M [N (SiMe3) 2] 2 (M-Ge, Sn, or Pb). Angew Chem Int Ed Eng. 36(22):2514–2516. doi:10.1002/anie.199725141.
  • George F, Mahieux S, Daniel C, Titécat M, Beauval N, Houcke I, Neut H, Allorge D, Borges F, Jan G, et al. 2021. Assessment of Pb (II), Cd (II) and AIII) removal capacity of bacteria from food and gut ecological niches: insights into biodiversity to limit intestinal biodisponibility of toxic metals. Microorganisms. 9(2):456. doi:10.3390/microorganisms9020456.
  • GIMM.2019. Indian Minerals Yearbook 2019 (Part- II: Metals and Alloys). Government of India Ministry of Mines Indian Bureau of Mines. Nagpur, India.
  • Girma G. 2015. Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res. 6:147–161.
  • Golden N, Warner S, Coffey M. 2016. A review and assessment of spent lead ammunition and its exposure and effects to scavenging birds in the United States. In: de Voogt WP, editor. Rev. Environ. Contam. Toxicol, Switzerland: Springer International Publishing; Vol. 237, pp. 123–191.
  • Goudarzi L, Kermanshahi R, Khaniki GJ. 2020. Response surface design for removal of lead by different lactic acid bacteria. Health Scope. 9(3):e101049. doi:10.5812/jhealthscope.101049.
  • Grue CE, Hoffman DJ, Beyer WN, Franson LP. 1986. Lead concentrations and reproductive success in European starlings Sturnus vulgaris nesting within highway roadside verges. Environ Pollut A. 42(2):157–182. doi:10.1016/0143-1471(86)90005-X.
  • Guidotti TL, Ragain L. 2007. Protecting children from toxic exposure: three strategies. Pediatr Clin North Am. 54(2):227–235. doi:10.1016/j.pcl.2007.02.002.
  • Gupta VK, Rastogi A. 2008a. Biosorption of lead from aqueous solutions by green algae spirogyra species: kinetics and equilibrium studies. J Hazard Mater. 152(1):407–414. doi:10.1016/j.jhazmat.2007.07.028.
  • Gupta VK, Rastogi A. 2008b. Biosorption of lead (II) from aqueous solutions by non living algal biomass Oedogonium sp. and Nostoc sp. - a comparative study. Colloids Surf B. 64(2):170–178. doi:10.1016/j.colsurfb.2008.01.019.
  • Haig SM, D’Elia J, Eagles-Smith C, Fair JM, Gervais J, Herring G, Rivers JW, Schulz JH. 2014. The persistent problem of lead poisoning in birds from ammunition and fishing tackle. Ornithol Appl. 116(3):408–428. doi:10.1650/CONDOR-14-36.1.
  • Halttunen T, Salminen S, Tahvonen R. 2007. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int. J. Food Microbiol. 114(1):30–35.
  • Han L, Chen Y, Chen M, Wu Y, Su R, Du L, Liu Z. 2020. Mushroom residue modification enhances phytoremediation potential of Paulownia Fortunei to lead-zinc slag. Chemosphere. 253:126774. doi:10.1016/j.chemosphere.2020.126774.
  • Harun H. 2021. Lipid peroxidation: aging kidney. Accenting Lipid Peroxidation. 133. doi:10.5772/intechopen.95801.
  • Hawkins BT, Davis TP. 2005. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 57(2):173–185. doi:10.1124/pr.57.2.4.
  • He ZL, Yang XE, Stoffella PJ. 2005. Trace elements in agro ecosystems and impacts on the environment. J Trace Elem Med Biol. 19(2–3):125–140. doi:10.1016/j.jtemb.2005.02.010.
  • Hoffman DJ, Franson JC, Pattee OH, Bunck CM, Anderson A. 1985b. Survival, growth, and accumulation of ingested lead in nestling American kestrels (Falco sparverius). Arch Environ Contam Toxicol. 14(1):89–94. doi:10.1007/BF01055766.
  • Hoffman DJ, Franson JC, Pattee OH, Bunck CM, Murray HC. 1985a. Biochemical and hematological effects of lead ingestion in nestling American kestrels (Falco sparverius). Comp Biochem Physiol Part C. 80(2):431–439. doi:10.1016/0742-8413(85)90080-5.
  • Hrynkiewicz K, Baum C. 2014. Application of microorganisms in bioremediation of environment from heavy metals. In: Malik A, Grohmann E, Akhtar R, editors. Environmental deterioration and human health. Dordrecht: Springer; pp. 215–227.
  • HSDB. 2007. Lead -Hazardous Substances Data Bank. National Library of Medicine. http://toxnet.nlm.nih.gov/.
  • Ibrahim NM, Eweis EA, El-Beltagi HS, Abdel-Mobdy YE. 2012. Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed. 2(1):41–46. doi:10.1016/S2221-1691(11)60187-1.
  • Ilhan S, Nourbakhsh MN, Kiliçarslan S, Ozdag H. 2004. Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish Electron J Biotechnol. 2(2):50–57.
  • IMYB. 2016. Lead and zinc. Part- II: metals & alloys. 55 th. India: Government of India Ministry of Mines Indian Bureau of Mines, Indira Bhavan.
  • Inthorn D, Sidtitoon N, Silapanuntakul S, Incharoensakdi A. 2002. Sorption of mercury, cadmium and lead by microalgae. Sci Asia. 28(3):253–261. doi:10.2306/scienceasia1513-1874.2002.28.253.
  • Ipeaiyeda AR, Adenipekun CO, Oluwole O. 2020. Bioremediation potential of ganoderma lucidum (curt: fr) p. karsten to remove toxic metals from abandoned battery slag dumpsite soil and immobilisation of metal absorbed fungi in bricks. Cogent Environ Sci. 6(1):1847400. doi:10.1080/23311843.2020.1847400.
  • Iram S, Shabbir R, Zafar H, Javaid M. 2015. Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng. 40(7):1867–1873. doi:10.1007/s13369-015-1702-1.
  • Ivánová D, Kaduková J, Kavuličová J, Horváthová H. 2012. Determination of the functional groups in algae Parachlorella Kessleri by potentiometric titrations. Nova Biotechnol et Chim. 11(2):93–99. doi:10.2478/v10296-012-0010-3.
  • Jadhav SH, Sarkar SN, Patil RD, Tripathi HC. 2007. Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol. 53(4):667–677. doi:10.1007/s00244-007-0031-0.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interd Toxicol. 7(2):60. doi:10.2478/intox-2014-0009.
  • Jalilvand N, Akhgar A, Alikhani HA, Rahmani HA, Rejali F. 2020. Removal of heavy metals zinc, lead, and cadmium by biomineralization of urease-producing bacteria isolated from Iranian mine calcareous soils. J Soil Sci Plant Nutr. 20(1):206–219. doi:10.1007/s42729-019-00121-z.
  • Jarup L. 2003. Hazards of heavy metal contamination. Br Med Bull. 68(1):167–182. doi:10.1093/bmb/ldg032.
  • Jassim HM, Hassan AA. 2011. Changes in some blood parameters in lactating female rats and their pups exposed to lead: effects of vitamins C and E. Iraqi J Vet Sci. 25(1):1–7. doi:10.33899/ijvs.2011.5708.
  • Javanbakht V, Alavi SA, Zilouei H. 2014. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol. 69(9):1775–1787. doi:10.2166/wst.2013.718.
  • Jin Y, Wang X, Zang T, Hu Y, Hu X, Ren G, Qu J. 2016. Biosorption of lead (II) by arthrobacter sp. 25: process optimization and mechanism. J microbial Biotechnol. 26(8):1428–1438. doi:10.4014/jmb.1603.03074.
  • Jin Y, Yu S, Teng C, Song T, Dong L, Liang J, Qu J. 2017. Biosorption characteristic of alcaligenes sp. bapb. 1 for removal of lead (II) from aqueous solution 3. Biotech. 7(2):123. doi:10.1007/s13205-017-0721-x.
  • Jones LHP, Jarvis SC. 1981. The fate of heavy metals. In: Green D Hayes M, editors. The chemistry of soil processes. New York, NY, USA: John Wiley & Sons; p. 593.
  • Kajan M, Livansky K, Bínová J, Fiser L, Novotny P. 1992. Productivity, heavy metal content and commensalic bacteria of the alga Scenedesmus Obliquus in outrdoor mass cultures grown with various nitrogen sources. Arch Hydrobiol Suppl Unters Elbe-Aestuars. 93:93–104.
  • Kalia K, Flora SJ. 2005. Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health. 47(1):1–21. doi:10.1539/joh.47.1.
  • Kalita D, Joshi SR. 2017. Study on bioremediation of lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep. 16:48–57. doi:10.1016/j.btre.2017.11.003.
  • Kang JK, Lee E, Kim HJ, Nam SY, Sul D, Kang JK. 2004. Effects of lead exposure on the expression of phospholipid hydroperoxidase glutathione peroxidase mRNA in the rat brain. Toxicolo Sci. 82(1):228–236. doi:10.1093/toxsci/kfh103.
  • Karimfar MH, Bargahi A, Moshtaghi D, Farzadinia P. 2016. Long-term exposure of lead acetate on rabbit renal tissue. Iran Red Crescent Med J. 18(2):e22157. doi:10.5812/ircmj.22157.
  • Katsuyama M, Matsuno K, Yabe-Nishimura C. 2012. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J Clin Biochem Nutr. 50(1):9–22. doi:10.3164/jcbn.11-06SR.
  • Kaur R, Goyal D. 2019. Toxicity and degradation of the insecticide monocrotophos. Environ Chem Lett. 17(3):1299–1324. doi:10.1007/s10311-019-00884-y.
  • Kilikdar D, Mukherjee D, Dutta M, Ghosh AK, Rudra S, Chandra AM, Bandyopadhyay D. 2013. Protective effect of aqueous garlic extract against lead-induced cardiac injury in rats. J Cell Tissue Res. 13(3):3817.
  • King M, Ramachandran V. 1995. Kirk-othmer encyclopedia of chemical technology. 4th ed. New York, NY: John Wiley and Sons. Lead; pp. 69–113.
  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R. 2001. Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol. 35(21):4283–4288. doi:10.1021/es010063x.
  • Koul B, Sharma K, Shah MP. 2022. Phycoremediation: a sustainable alternative in wastewater treatment (WWT) regime. Environ Technol Innov. 25:102040. doi:10.1016/j.eti.2021.102040.
  • Kreager N, Wainman BC, Jayasinghe RK, Tsuji LJS. 2008. Lead pellet ingestion and liver-lead concentrations in upland game birds from southern Ontario, Canada. Arch Environ Contam Toxicol. 54(2):331–336. doi:10.1007/s00244-007-9020-6.
  • Kristi L. 2009. The Alkali metals. New York, NY: Rosen publishing group Inc.
  • Kumar L, Bharadvaja N. 2020. Microbial remediation of heavy metals. In: Shah MP, editor. Microbial bioremediation and biodegradation. Singapore: Springer; pp. 49–72.
  • Lakmali WM, Athukorala ASN, Jayasundera KB. 2022. Investigation of Pb (II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Sci Eng. 15(3):237–246. doi:10.1016/j.wse.2022.04.003.
  • Lambert M, Leven BA, Green RM. 2000. New methods of cleaning up heavy metal in soils and water. Manhattan, KS: Environmental Science and Technology Briefs for Citizens. Kansas State University.
  • Lead in history. 2020. https://corrosion-doctors.org/Elements-Toxic/Lead-history.html.
  • Lee YC, Chang SP. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol. 102(9):5297–5304. doi:10.1016/j.biortech.2010.12.103.
  • Lenntech. 2004. Water treatment and air purification. Netherlands: Water Treatment, Published by Lenntech, Rotterdamseweg. www.excelwater.com/thp/filters/Water-Purification.htm
  • Leusch A, Holan ZR, Volesky B. 1995. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically‐reinforced biomass of marine algae. J Chem Technol Biotechnol. 62(3):279–288. doi:10.1002/jctb.280620311.
  • Liaquat F, Munis MH, Haroon U, Arif S, Saqib S, Zaman W, Liu Q. 2020. Evaluation of metal tolerance of fungal strains isolated from contaminated mining soil of Nanjing, China. Biology. 9(12):469. doi:10.3390/biology9120469.
  • Liu Q, Cai H, Xu Y, Xiao L, Yang M, Wang P. 2007. Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron. 22(12):3224–3229. doi:10.1016/j.bios.2007.03.005.
  • Liu M, Lou X, Du J, Guan M, Wang J, Ding X, Zhao J. 2012. Dnazyme-based fluorescent microarray for highly selective and sensitive detection of lead (II). Analyst (Lond). 137(1):70–72. doi:10.1039/C1AN15633K.
  • Liu S, Zheng Y, Ma Y, Sarwar A, Zhao X, Luo T, Yang Z. 2019. Evaluation and proteomic analysis of lead adsorption by lactic acid bacteria. Int J Mol Sci. 20(22):5540. doi:10.3390/ijms20225540.
  • Locke LN, Friend M. 1992. Lead poisoning of avian species other than waterfowl. . 19–22.
  • Maier RM. 2000. Bioavailability and its importance to bioremediation. In: Valdes JJ, editor. Bioremediation. Dordrecht: Springer; pp. 59–78.
  • Malcolm D, Barnett HAR. 1982. A mortality study of lead workers 1925-76. Br J Ind Med. 39(4):404–410. doi:10.1136/oem.39.4.404.
  • Malik A. 2004. Metal bioremediation through growing cells. Environ Int. 30(2):261–278. doi:10.1016/j.envint.2003.08.001.
  • Mashitah MD, Zulfadhly Z, Bhatta S. 1999. Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. Arti Cells, Blood Sub Biotechnol. 27(5–6):441–445. doi:10.3109/10731199909117717.
  • Massoud R, Khosravi‐darani K, Sharifan A, Asadi G, Zoghi A. 2020. Lead and cadmium biosorption from milk by Lactobacillus Acidophilus ATCC 4356. Food Sci Nutri. 8(10):5284–5291. doi:10.1002/fsn3.1825.
  • Matheickal JT, Yu Q. 1996. Biosorption of lead from aqueous solutions by marine algae Ecklonia Radiata. Water Sci Technol. 34(9):1–7. doi:10.2166/wst.1996.0163.
  • McFarland MJ, Hauer ME, Reuben A. 2022. Half of US population exposed to adverse lead levels in early childhood. Proc Natl Acad Sci. 119(11):e2118631119. doi:10.1073/pnas.2118631119.
  • Mellins RB, Jenkins CD. 1955. Epidemiological and psychological study of lead poisoning in children. JAMA. 158(1):15–20. doi:10.1001/jama.1955.02960010017004.
  • Michaels D, Zoloth SR, Stern FB. 1991. Does low-level lead exposure increase risk of death? A mortality study of newspaper printers. Int J Epidemiol. 20(4):978–983. doi:10.1093/ije/20.4.978.
  • Mohamed HHA, Khairia MAQ. 2012. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res. 38: 1(1):31–37. doi:10.1016/j.ejar.2012.08.002.
  • Morais S, Costa FG, Pereira MDL. 2012. Heavy metals and human health. In Environmental Health–Emerging Issues Practices. 10(1):228–246.
  • Mousa HM, Al-Qarawi AA, Ali BH, Abdel-Rehman HA, El-Mougy SA. 2002. Effect of lead exposure on the erythrocytic antioxidant levels in goats. J Vet Med A Physiol Pathol Clin Med. 49(10):531–534. doi:10.1046/j.1439-0442.2002.00499.x.
  • Mubashar M, Naveed M, Mustafa A, Ashraf S, Shehzad Baig K, Alamri S, Kalaji HM. 2020. Experimental investigation of chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater. Water. 12(11):3034. doi:10.3390/w12113034.
  • Murali O, Mehar SK. 2014. Bioremediation of heavy metals using Spirulina. Int J Geo Earth Environ Sci. 4:244–249.
  • Mwandira W, Nakashima K, Kawasaki S, Arabelo A, Banda K, Nyambe I, Chirwa I, Ito M, Sato T, Igarashi T, et al. 2020. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus Profundus Isolated from an abandoned mine. Sci Report. 10(1):1–9. doi:10.1038/s41598-020-78187-4.
  • Narendrula-Kotha R, Nkongolo KK. 2017. Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing. Eco Genet Genom. 2:13–24. doi:10.1016/j.egg.2016.11.001.
  • Naveena J, Latha L. 2018. Fungal cell walls as protective barriers for toxic metals. Adv Med Biol. 53:181–198.
  • Ndeddy Aka RJ, Babalola OO. 2017. Identification and characterization of Cr-, Cd-, and Ni-Tolerant bacteria isolated from mine tailings. Bioremediat J. 21(1):1–19. doi:10.1080/10889868.2017.1282933.
  • Needleman HL. 2004. Lead poisoning. Annu Rev Med. 55(1):209–222. doi:10.1146/annurev.med.55.091902.103653.
  • Nies DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev. 27(2–3):313–339. doi:10.1016/S0168-6445(03)00048-2.
  • Niu X, Zhong Y, Chen R, Wang F, Liu Y, Luo D. 2018. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens Actuators B Chem. 252(5):1577–1581. doi:10.1016/j.snb.2017.08.167.
  • NMLS. 2019. Prevention of lead poisoning. news medical life science. https://www.news-medical.net/health/Prevention-of-Lead-Poisoning.aspx.
  • NRC. 1993. Measuring lead exposure in infants, children, and other sensitive populations. Committee on measuring lead in critical populations. Washington (DC): National Academies Press (US).
  • Nriagu JO. 1989. A global assessment of natural sources of atmospheric trace metals. Nature. 338:47–49. doi:10.1038/338047a06210.
  • Offor SJ, Mbagwu HOC, Orisakwe OE. 2017. Lead induced hepato-renal damage in male albino rats and effects of activated charcoal. Front Pharmacol. 8:107. doi:10.3389/fphar.2017.00107.
  • Offor SJ, Mbagwu HO, Orisakwe OE. 2019. Improvement of lead acetate-induced testicular injury and sperm quality deterioration by Solanum anomalum thonn. ex. schumach fruit extracts in albino rats. J Family Reprod Health. 13(2):98–108.
  • Okoduwa SIR, Igiri B, Udeh CB, Edenta C, Gauje B. 2017. Tannery effluent treatment by yeast species isolates from watermelon. Toxics. 5(1):6. doi:10.3390/toxics5010006.
  • Olusola BO, Aransiola MN. 2015. Biosorption of lead (Pb2+) from industrial effluent using green algae. Int J Sci Res. 5(12):372–377.
  • Olympio KP, Gonçalves C, Günther WM, Bechara EJ. 2009. Neurotoxicity and aggressiveness triggered by low-level lead in children: a review. Revista Panamericana de Salud Pública. 26(3):266–275. doi:10.1590/S1020-49892009000900011.
  • Oswald WJ, Gotaas HB. 1957. Photosynthesis in sewage treatment. Trans Am Soc Civil Eng. 122(1):73–97. doi:10.1061/TACEAT.0007483.
  • Oves M, Khan MS, Zaidi A. 2013. Biosorption of heavy metals by bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci. 20(2):121–129. doi:10.1016/j.sjbs.2012.11.006.
  • Oymak T, Tokalioglu Yilmaz V, Yılmaz D. 2009. Determination of lead and cadmium in food samples by the coprecipitation method. Food Chem. 113(4):1314–1317. doi:10.1016/j.foodchem.2008.08.064.
  • Ozdemir S, Okumuş V, Dündar A, Kılınç E. 2014. The use of fungal biomass Agaricus Bisporus immobilized on amberlite XAD-4 resin for the solid-phase preconcentration of thorium. Bioremediat J. 18(1):38–45. doi:10.1080/10889868.2013.834870.
  • Pacyna JM. 1996. Monitoring and assessment of metal contaminants in the air. In: Chang L, Magos L Suzuli T, editors. Toxicology of metals. Boca Raton, FL: CRC Press; pp. 9–28.
  • Pain DJ, Mateo R, Green RE. 2019. Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio. 48(9):935–953. doi:10.1007/s13280-019-01159-0.
  • Pain DJ, Sears J, Newton I. 1995. Lead concentrations in birds of prey in britain. Environ Pollut. 87(2):173–180. doi:10.1016/0269-7491(94)P2604-8.
  • Pardo R, Herguedas M, Barrado E, Vega M. 2003. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida. Anal Bioanal Chem. 376(1):26–32. doi:10.1007/s00216-003-1843-z.
  • Parween A, Khan MM, Upadhyay T, Tripathi RV. 2018. Prevalence of elevated blood lead level in children of india. Nat Env Poll Tech. 17(3):703–710.
  • Patel AB, Williams SV, Frumkin H, Kondawar VK, Glick H, Ganju AK. 2001. Blood lead in children and its determinants in Nagpur, India. Int J Occup Environ Health. 7(2):119–126. doi:10.1179/oeh.2001.7.2.119.
  • Patra RC, Rautray AK, Swarup D. 2011. Oxidative stress in lead and cadmium toxicity and its amelioration.vet. Med Int Article. 457327. doi:10.4061/2011/457327.
  • Paul N, Chakraborty S, Sengupta M. 2014. Lead toxicity on non-specific immune mechanisms of freshwater fish Channa Punctatus. Aqua Toxicol. 152:105–112. doi:10.1016/j.aquatox.2014.03.017.
  • Perrone L, Ponticiello E, Del Giudice MM, Marotta A, Di Toro R. 1999. Epidemiological study of blood lead levels of children and adolescents living in Campania, Italy. J Trace Elem Med Biol. 13(4):220–223. doi:10.1016/S0946-672X(99)80039-X.
  • Puyen ZM, Villagrasa E, Maldonado J, Diestra E, Esteve I, Solé A. 2012. Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol. 126:233–237. doi:10.1016/j.biortech.2012.09.036.
  • Qiao W, Zhang Y, Xia H, Luo Y, Liu S, Wang S, Wang W. 2019. Bioimmobilization of lead by bacillus subtilis x3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms. R So Open Sci. 6(2):181701. doi:10.1098/rsos.181701.
  • Qin J, Xiong H, Ma H, Li Z. 2019. Effects of different fertilizers on residues of oxytetracycline and microbial activity in soil. Environ Sci Pollut Res. 26(1):161–170. doi:10.1007/s11356-018-3603-9.
  • Queiroz EKR, De-Waissmann W. 2006. Occupational exposure and effects on the male reproductive system. Cadernos de Saúde Pública. 22(3):485–493. doi:10.1590/S0102-311X2006000300003.
  • Rabinowitz M, Leviton A, Needleman H. 1985. Lead in milk and infant blood: a dose-response model. Arch Environ Health. 40(5):283–286.
  • Radulescu C, Dulama ID, Stihi C, Ionita I, Chilian A, Necula C, Chelarescu ED. 2014. Determination of heavy metal levels in water and therapeutic mud by atomic absorption spectrometry. Rom J Phys. 59(9–10):1057–1066.
  • Rani MJ, Hemambika B, Hemapriya J, Rajeshkannan VR. 2010. Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: a biosorption approach. G J Environ Res. 4(1):23–30.
  • Raven PH, Berg LR, Johnson GB. 1998. Environment. New York, NY, USA: Saunders College Publishing.
  • Redha A. 2020. Removal of heavy metals from aqueous media by biosorption. Arab J Basic Appl Sci. 27(1):183–193. doi:10.1080/25765299.2020.1756177.
  • Ren G, Jin Y, Zhang C, Gu H, Qu J. 2015. Characteristics of bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicol Environ Safe. 117:141–148. doi:10.1016/j.ecoenv.2015.03.033.
  • Ribeiro RF, Magalhães SM, Barbosa FA, Nascentes CC, Campos IC, Moraes DC. 2010. Evaluation of the potential of microalgae microcystis novacekii in the removal of Pb2+ from an aqueous medium. J Hazard Mater. 179(1–3):947–953. doi:10.1016/j.jhazmat.2010.03.097.
  • Riva MA, Lafranconi A, D’Orso MI, Cesana G. 2012. Lead poisoning: historical aspects of a paradigmatic “occupational and environmental disease”. Safe Health Work. 3(1):11–16. doi:10.5491/SHAW.2012.3.1.11.
  • Rosen JF, Markowitz ME, Bijur PE, Jenks ST, Wielopolski L, Kalef-Ezra JA, Slatkin DN. 1991. Sequential measurements of bone lead content by L X-ray fluorescence in cana2edta-treated lead-toxic children. Environ Health Perspect. 93:271–277. doi:10.1289/ehp.9193271.
  • Rozman U, Kalčíková G, Marolt G, Skalar T, Gotvajn AŽ. 2020. Potential of waste fungal biomass for lead and cadmium removal: characterization, biosorption kinetic and isotherm studies. Environ Technol Innov. 18:100742. doi:10.1016/j.eti.2020.100742.
  • Sadiq M, Alam I. 1997. Lead contamination of groundwater in an industrial complex. Water Air Soil Pollut. 98(1–2):167–177. doi:10.1007/BF02128655.
  • Sanders T, Liu Y, Buchner V, Tchounwou PB. 2009. Neurotoxic effects and biomarkers of lead exposure: a review. Rev Environ Health. 24(1):15–46. doi:10.1515/reveh.2009.24.1.15.
  • Sanderson GC, Bellrose FC. 1986. A review of the problem of lead poisoning in waterfowl 1. Ill Nat Hist Surv Spec Publ. 4:1–34. http://hdl.handle.net/2142/111642.
  • Şenol ZM, Gül ÜD, Gurbanov R, Şimşek S. 2021. Optimization the removal of lead ions by fungi: explanation of the mycosorption mechanism. J Environ Chem Eng. 9(2):104760. doi:10.1016/j.jece.2020.104760.
  • Sen SK, Raut S, Dora TK, Mohapatra PKD. 2014. Contribution f hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model. J Hazard Mater. 265:47–60. doi:10.1016/j.jhazmat.2013.11.036.
  • Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. 2020. Enhanced bio-recovery of aluminum from low-grade bauxite using adapted fungal strains. Braz J Microbiol. 51(4):1909–1918. doi:10.1007/s42770-020-00342-w.
  • Sharma RK, Agrawal M, Marshall FM. 2008a. Depositions of heavy metals (Cd, Pb, Zn, and Cu) in Varanasi city, India. Environ Monit Assess. 142(1–3):269–278. doi:10.1007/s10661-007-9924-7.
  • Sharma RK, Agrawal M, Marshall FM. 2008b. Heavy metals (Cu, Cd, Zn and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environ Pollut. 154(2):254–263. doi:10.1016/j.envpol.2007.10.010.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi:10.1590/S1677-04202005000100004.
  • Sharma S, Rana S, Thakkar A, Baldi A, Murthy RSR, Sharma RK. 2016. Physical, chemical and phytoremediation technique for removal of heavy metals. J Heavy Me Toxic Dis. 1(2):1–15. doi:10.21767/2473-6457.100010.
  • Sharma S, Singh B. 2014. Effects of acute and chronic lead exposure on kidney lipid peroxidation and antioxidant enzyme activities in BALB-C mice (Mus musculus. Int J Sci Res. 3:1564–1566.
  • Shea EE. 1996. Lead regulation handbook. Rockville, MD: Government Institutes. Inc. p. 240.
  • Siddiquee S, Rovina K, Azad SA. 2015. Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol. 7(06):384–395. doi:10.4172/1948-5948.1000243.
  • Smily JRMB, Sumithra PA. 2017. Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. bscr02 and its desorption studies. Hayati. 2(2):65–71. doi:10.1016/j.hjb.2017.08.005.
  • Snyder NF, Snyder HA, Lincer JL, Reynolds RT. 1973. Organochlorines, heavy metals, and the biology of north American accipiters. Bioscience. 23(5):300–305. doi:10.2307/1296439.
  • Souza PO, Ferreira LR, Pires NR, Filho PJ, Duarte FA, Pereira CM, Mesko MF. 2012. Algae of economic importance that accumulate cadmium and lead: a review. Rev Bras Farmacogn. 22(4):825–837. doi:10.1590/S0102-695X2012005000076.
  • Spain O, Plöhn M, Funk C. 2021. The cell wall of green microalgae and its role in heavy metal removal. Physiol Plant. 173(2):526–535. doi:10.1111/ppl.13405.
  • SRD. 2021. Production volume of refined lead worldwide from 2006 to 2020. Statista research department. Singapore: Statista pte ltd.
  • Staudinger KC, Roth VS. 1998. Occup Lead Poisoning Am Fam Physician. 57(4):719–726. http://org/afp/1998/0215/p719.
  • Sultana N, Hossain SZ, Mohammed ME, Irfan MF, Haq B, Faruque MO, Hossain MM. 2020. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Sci Rep. 10(1):1–15. doi:10.1038/s41598-020-72236-8.
  • Sutherland CA, Milner EF. 1990. Lead. In: Elvers B, Hawkins S Schulz G, editors. Ullmann’s encyclopedia of industrial chemistry. 5th ed. New York, NY: VCH Publishers; pp. 193–236.
  • Swift DT, Forciniti D. 1997. Accumulation of lead by anabaena cylindrica: mathematical modeling and an energy dispersive X–Raystudy. Biotechnol Bioeng. 55(2):408–418. doi:10.1002/(SICI)1097-0290(19970720)55:2<408:AID-BIT18>3.0.CO;2-C.
  • Tang CY, Fu QS, Criddle CS, Leckie JO. 2007. Effect of flux (transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing waste water. Environ Sci Technol. 41(6):2008–2014. doi:10.1021/es062052f.
  • Taniguchi IE, Gonzalez-Nieto D, Ghiaur G, Dunn SK, Ficker AM, Murali B, Madhu M, Gutstein DE, Fishman GI, Barrio LC, et al. 2012. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells. Proc Natl Acad Sci U S A. 109(23):9071–9076. doi:10.1073/pnas.1120358109.
  • Tauriaine S, Karp M, Chang W, Virta M. 1998. Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron. 13(9):931–938. doi:10.1016/S0956-5663(98)00027-X.
  • Ting ASY, Choong CC. 2009. Bioaccumulation and biosorption efficacy of trichoderma isolate SP2F1 in removing copper (Cu (II) from aqueous solutions. World J Microbiol Biotechnol. 25(8):1431–1437. doi:10.1007/s11274-009-0030-6.
  • Tozun M, Unsal A, Sirmagul B. 2009. The lead exposure among lead workers: an epidemiological study from west Turkey. Iranian J Publ Health. 38:65–78.
  • Tunali S, Çabuk A, Akar T. 2006. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng. 115(3):203–211. doi:10.1016/j.cej.2005.09.023.
  • Tuzen M. 2003. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J. 74(3):289–297. doi:10.1016/S0026-265X(03)00035-3.
  • Vallejo-Aguilar MDLLA, Marín-Castro MA, Ramos-Cassellis ME, Silva-Gómez SE, Cantún DI, Flores JVT. 2021. Biosorción y tolerancia de Pb, Cr y Cd por la biomasa de Pleurotus ostreatus (Jacq. Ex Fr.) P. Kumm. Rev Mexicana cienc Agric. 12(2):275–289. doi:10.29312/remexca.v12i2.2687.
  • Vallverdú-Coll N, Mateo R, Mougeot F, Ortiz-Santaliestra ME. 2019. Immunotoxic effects of lead on birds. Sci Total Environ. 689:505–515. doi:10.1016/j.scitotenv.2019.06.251.
  • Varghese R, Krishna MP, Babu AV, Hatha AAM. 2012. Biological removal of lead by Bacillus sp. obtained from metal contaminated industrial area. J Microbiol Biotechnol Food Sci. 2(2):556–570.
  • Verma A, Kumar S, Kumar S. 2016. Biosorption of lead ions from the aqueous solution by sargassum filipendula: equilibrium and kinetic studies. J Environ Chem Eng. 4(4):4587–4599. doi:10.1016/j.jece.2016.10.026.
  • Villen-Guzman M, Jiménez C, Rodriguez-Maroto JM. 2021. Batch and fixed-bed biosorption of Pb (II) using free and alginate-immobilized Spirulina. Processes. 9(3):466. doi:10.3390/pr9030466.
  • Walker DJ, Clemente R, Bernal MP. 2004. Contrasting Effects of manure and compost on soil ph, heavy metal availability and growth of Chenopodium album L. In a soil contaminated by pyritic mine waste. Chemosphere. 57(3):215–224. doi:10.1016/j.chemosphere.2004.05.020.
  • Waluyo L, Prihanta W, Bachtiar Z, Permana TI, 2020. Potential bioremediation of lead (Pb) using marine microalgae Nannochloropsis oculata. AIP Conference Proceedings; 2019 Sep 12–13; Malang, Indonesia; 223( 1):040088.
  • Wani AA, Ara A, Usmani JA. 2015. Lead toxicity: a review. Interdiscip Toxicol. 8(2):55–64. doi:10.1515/intox-2015-0009.
  • WHO. 2022. Lead poisoning. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.
  • Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices. 2011:1–20. doi:10.5402/2011/402647.
  • Xu J, Yan CH, Yang B, Xie HF, Zou XY, Zhong L, Gao Y, Tian Y, Shen XM. 2009. The role of metabotropic glutamate receptor 5 in developmental lead neurotoxicity. Toxicol Lett. 191(2–3):223–530. doi:10.1016/j.toxlet.2009.09.001.
  • Xu W, Zhao A, Zuo F, Khan R, Hussain HMJH, Li J. 2020. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum. Anal Bioanal Chem. 412(19):4565–4574. doi:10.1007/s00216-020-02709-2.
  • Yang DM, Manurung RB, Lin YS, Chiu TY, Lai WQ, Chang YN, Fu TF. 2020. Monitoring the heavy metal lead inside living drosophila with a FRET-based biosensor. Sensors. 20(6):1712. doi:10.3390/s20061712.
  • Yan G, Viraraghavan T. 2003. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 37(18):4486–4496. doi:10.1016/S0043-1354(03)00409-3.
  • Yi Y, Lim JM, Gu S, Lee WK, Oh E, Lee SM, Oh BT. 2017. Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb (II) toxicity. J Microbiol. 55(4):296–303. doi:10.1007/s12275-017-6642-x.
  • Yuce M, Nazir H, Donmez G. 2010. Using of Rhizopus arrhizus as a sensor modifying component for determination of Pb(II) in aqueous media by voltammetry. Bioresour Technol. 101(19):7551–7555. doi:10.1016/j.biortech.2010.04.099.
  • Zhang B, Fan R, Bai Z, Wang S, Wang L, Shi J. 2013. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Environ Sci Pollut Res. 20(3):1367–1373. doi:10.1007/s11356-012-1146-z.
  • Zheng H, Lin WX, Hu HY, Huang JH, Huang MN, He YS. 2008. Effects of low-level lead exposure on the neurobehavioral development of infants and early intervention. Chin J Prev Vet Med. 42:165–168.
  • Zing Y, Li Z, Li Y, Lei G, Li L, Yang X, Zhang Z, Yang W. 2021. The ability of edible fungi residue to remove lead in wastewater. Front Environ Sci. 366. doi:10.3389/fenvs.2021.723087.
  • Zuo P, Yin BC, Ye BC. 2009. Dnazyme-based microarray for highly sensitive determination of metal ions. Biosens Bioelectron. 25(4):935–939. doi:10.1016/j.bios.2009.08.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.