281
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Atmospheric pollution by potentially toxic elements: measurement and risk assessment using lichen transplants

, , , , , , , & show all
Pages 1270-1283 | Received 26 Nov 2022, Accepted 25 Jan 2023, Published online: 14 Feb 2023

References

  • Abas A. 2021. A systematic review on biomonitoring using lichen as the biological indicator: a decade of practices, progress and challenges. Ecol Indic. 121:107197. doi:10.1016/j.ecolind.2020.107197.
  • Adimalla N. 2020. Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: a review. Environ Geochem Health. 42(1):173–190. doi:10.1007/s10653-019-00324-4.
  • Al-Alam J, Chbani A, Faljoun Z, Millet M. 2019. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution—a review. Environ Sci Pollut Res. 26(10):9391–9408. doi:10.1007/s11356-019-04388-8.
  • Al-Awadhi JM, AlShuaibi AA. 2013. Dust fallout in Kuwait city: deposition and characterization. Sci Total Environ. 461:139–148. doi:10.1016/j.scitotenv.2013.03.052.
  • Bačkor M, Loppi S. 2009. Interactions of lichens with heavy metals. Biol Plant. 53(2):214–222. doi:10.1007/s10535-009-0042-y.
  • Baghaie AH, Aghili F. 2019. Health risk assessment of Pb and Cd in soil, wheat, and barley in Shazand County, central of Iran. J Environ Health Sci Eng. 17(1):467–477. doi:10.1007/s40201-019-00365-y.
  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12:643972. doi:10.3389/fphar.2021.643972.
  • Bánfalvi G. 2011. Cellular effects of heavy metals. Springer.
  • Bargagli R, Nimis PL, Monaci F. 1997. Lichen biomonitoring of trace element deposition in urban, industrial and reference areas of Italy. J Trace Elem Med Biol. 11(3):173–175. doi:10.1016/S0946-672X(97)80049-1.
  • Bauer SE, Im U, Mezuman K, Gao CY. 2019. Desert dust, industrialization, and agricultural fires: health impacts of outdoor air pollution in Africa. J Geophys Res Atmos. 124(7):4104–4120. doi:10.1029/2018JD029336.
  • Behrooz RD, Kaskaoutis D, Grivas G, Mihalopoulos N. 2021. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere. 262:127835. doi:10.1016/j.chemosphere.2020.127835.
  • Blot W, Fraumeni J JR. 1975. Arsenical air pollution and lung cancer. The Lancet. 306(7926):142–144. doi:10.1016/S0140-6736(75)90054-9.
  • Brunekreef B, Holgate ST. 2002. Air pollution and health. The Lancet. 360(9341):1233–1242. doi:10.1016/S0140-6736(02)11274-8.
  • Brunialti G, Frati L. 2014. Bioaccumulation with lichens: the Italian experience. Int J Environ Stud. 71(1):15–26. doi:10.1080/00207233.2014.880996.
  • Cambra-López M, Aarnink AJ, Zhao Y, Calvet S, Torres AG. 2010. Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environ Pollut. 158(1):1–17. doi:10.1016/j.envpol.2009.07.011.
  • Canha N, Almeida S, Freitas M, Wolterbeek H. 2014. Indoor and outdoor biomonitoring using lichens at urban and rural primary schools. J Toxicol Environ Health A. 77(14–16):900–915. doi:10.1080/15287394.2014.911130.
  • Carreras HA, Pignata MAL. 2002. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 117(1):77–87. doi:10.1016/S0269-7491(01)00164-6.
  • Chaparro MA, Lavornia JM, Chaparro MA, Sinito AM. 2013. Biomonitors of urban air pollution: magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environ Pollut. 172:61–69. doi:10.1016/j.envpol.2012.08.006.
  • Chen Y, Hu W, Huang B, Weindorf DC, Rajan N, Liu X, Niedermann S. 2013. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China. Ecotoxicol Environ Saf. 98:324–330. doi:10.1016/j.ecoenv.2013.09.037.
  • Çiçek A, Koparal AS, Aslan A, Yazici K. 2007. Accumulation of heavy metals from motor vehicles in transplanted lichens in an urban area. Commun Soil Sci Plant Anal. 39(1–2):168–176. doi:10.1080/00103620701759111.
  • Contardo T, Giordani P, Paoli L, Vannini A, Loppi S. 2018. May lichen biomonitoring of air pollution be used for environmental justice assessment? A case study from an area of N Italy with a municipal solid waste incinerator. Environ Forensics. 19(4):265–276. doi:10.1080/15275922.2018.1519742.
  • Conti M, Tudino M. 2016. Lichens as biomonitors of heavy-metal pollution. Compr Anal Chem. 73:117–145.
  • Dalvand A, Jahangiri A, Iranmanesh J. 2016. Introduce lichen Lepraria incana as biomonitor of Cesium-137 from Ramsar, northern Iran. J Environ Radioact. 160:36–41. doi:10.1016/j.jenvrad.2016.04.018.
  • De La Cruz ARH, De La Cruz JKH, Tolentino DA, Gioda A. 2018. Trace element biomonitoring in the Peruvian Andes metropolitan region using Flavoparmelia caperata lichen. Chemosphere. 210:849–858. doi:10.1016/j.chemosphere.2018.07.013.
  • Doabi SA, Karami M, Afyuni M, Yeganeh M. 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicol Environ Saf. 163:153–164. doi:10.1016/j.ecoenv.2018.07.057.
  • EPAA. (1989). Risk assessment guidance for superfund. Volume I: human health evaluation manual (part a).
  • EPAU. 1996. Soil screening guidance: technical background document| Superfund| US EPA. Washington, DC: US Environmental Protection Agency. Accessed 7 March 2018.
  • EPAU. 2001. Risk assessment guidance for superfund: volume i, human health evaluation manual (Part D, standardized planning, reporting, and review of superfund risk assessments). Office of emergency and remedial response Vol. 20460, Washington DC: US Environmental Protection Agency.
  • Ferreira-Baptista L, De Miguel E. 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ. 39(25):4501–4512. doi:10.1016/j.atmosenv.2005.03.026.
  • Garty J, Garty-Spitz R. 2015. Lichens and particulate matter: inter-relations and biomonitoring with lichens. In: Recent Advances in Lichenology. Springer; pp. 47–85.
  • Giampaoli P, Wannaz ED, Tavares AR, Domingos M. 2016. Suitability of Tillandsia usneoides and Aechmea fasciata for biomonitoring toxic elements under tropical seasonal climate. Chemosphere. 149:14–23. doi:10.1016/j.chemosphere.2016.01.080.
  • Goudarzi G, Alavi N, Geravandi S, Idani E, Behrooz HRA, Babaei AA, Alamdari FA, Dobaradaran S, Farhadi M, Mohammadi MJ. 2018. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran. Int J Biometeorol. 62(6):1075–1083. doi:10.1007/s00484-018-1510-x.
  • Goudarzi G, Baboli Z, Moslemnia M, Tobekhak M, Birgani YT, Neisi N, Babaei AA et al. 2021. Assessment of incremental lifetime cancer risks of ambient air PM10-bound PAHs in oil-rich cities of Iran. Journal of Environmental Health Science and Engineering. 19:319–330. doi:10.1007/s40201-020-00605-6.
  • Goudie AS. 2014. Desert dust and human health disorders. Environ Int. 63:101–113. doi:10.1016/j.envint.2013.10.011.
  • Jiang Y, Shi L, Guang A-L, Mu Z, Zhan H, Wu Y. 2018. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China. Environ Geochem Health. 40(5):2007–2020. doi:10.1007/s10653-017-0028-1.
  • Kampa M, Castanas E. 2008. Human health effects of air pollution. Environ Pollut. 151(2):362–367. doi:10.1016/j.envpol.2007.06.012.
  • Kamunda C, Mathuthu M, Madhuku M. 2016. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. Int J Environ Res Public Health. 13(7):663. doi:10.3390/ijerph13070663.
  • Khamesi A, Khademi H, Zeraatpisheh M. 2020. Biomagnetic monitoring of atmospheric heavy metal pollution using pine needles: the case study of Isfahan, Iran. Environ Sci Pollut Res. 27(25):31555–31566. doi:10.1007/s11356-020-09247-5.
  • Khare S, Latifi H, Khare S. 2021. Vegetation growth analysis of unesco world heritage hyrcanian forests using multi-sensor optical remote sensing data. Remote Sens Environ. 13(19):3965. doi:10.3390/rs13193965.
  • Komárek M, Ettler V, Chrastný V, Mihaljevič M. 2008. Lead isotopes in environmental sciences: a review. Environ Int. 34(4):562–577. doi:10.1016/j.envint.2007.10.005.
  • Kong S, Lu B, Ji Y, Zhao X, Chen L, Li Z, Han B, Bai Z. 2011. Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchem J. 98(2):280–290. doi:10.1016/j.microc.2011.02.012.
  • Kord B, Mataji A, Babaie S. 2010. Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Technol. 7(1):79–84. doi:10.1007/BF03326119.
  • Kranner I, Beckett R, Hochman A, Nash TH III. 2008. Desiccation-tolerance in lichens: a review. The Bryologist. 111(4):576–593. doi:10.1639/0007-2745-111.4.576.
  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L. 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ. 468:843–853. doi:10.1016/j.scitotenv.2013.08.090.
  • Loppi S, Corsini A, Paoli L. 2019. Estimating environmental contamination and element deposition at an urban area of central Italy. Urban Sci. 3(3):76. doi:10.3390/urbansci3030076.
  • Loppi S, Paoli L. 2015. Comparison of the trace element content in transplants of the lichen Evernia prunastri and in bulk atmospheric deposition: a case study from a low polluted environment (C Italy). Biologia. 70(4):460–466. doi:10.1515/biolog-2015-0053.
  • Maghakyan N. 2016. Assessment of pollution levels and human health risk of heavy metals in snow dust (Case study, Yerevan). Proceedings of the 18th International Conference on Heavy Metals in the Environment.
  • Malaspina P, Tixi S, Brunialti G, Frati L, Paoli L, Giordani P, Modenesi P, Loppi S. 2014. Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environ Sci Pollut Res. 21(22):12836–12842. doi:10.1007/s11356-014-3222-z.
  • Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. 2020. Environmental and health impacts of air pollution: a review. Public Health Front. 8:14. doi:10.3389/fpubh.2020.00014.
  • Man YB, Sun XL, Zhao YG, Lopez BN, Chung SS, Wu SC, Cheung KC, Wong MH. 2010. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environ Int. 36(6):570–576. doi:10.1016/j.envint.2010.04.014.
  • Mateos AC, Amarillo AC, Carreras HA, Gonzalez CM. 2018. Land use and air quality in urban environments: human health risk assessment due to inhalation of airborne particles. Environ Res. 161:370–380. doi:10.1016/j.envres.2017.11.035.
  • Mohammadi AA, Zarei A, Majidi S, Ghaderpoury A, Hashempour Y, Saghi MH, Alinejad A, Yousefi M, Hosseingholizadeh N, Ghaderpoori M. 2019. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX. 6:1642–1651. doi:10.1016/j.mex.2019.07.017.
  • MohseniBandpi A, Eslami A, Ghaderpoori M, Shahsavani A, Jeihooni AK, Ghaderpoury A, Alinejad A. 2018. Health risk assessment of heavy metals on PM2. 5 in Tehran air, Iran. Data in brief. 17:347–355. doi:10.1016/j.dib.2018.01.018.
  • Monna F, Poujol M, Losno R, Dominik J, Annegarn H, Coetzee H. 2006. Origin of atmospheric lead in Johannesburg, South Africa. Atmos Environ. 40(34):6554–6566. doi:10.1016/j.atmosenv.2006.05.064.
  • Nash T, Gries C. 1991. Lichens as indicators of air pollution. In: Air pollution. Springer; pp. 1–29.
  • Nazarpour A, Watts MJ, Madhani A, Elahi S. 2019. Source, spatial distribution and pollution assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Sci Rep. 9(1):1–11. doi:10.1038/s41598-019-41787-w.
  • Neisi A, Goudarzi G, Akbar Babaei A, Vosoughi M, Hashemzadeh H, Naimabadi A, Mohammadi MJ, Hashemzadeh B. 2016. Study of heavy metal levels in indoor dust and their health risk assessment in children of Ahvaz city, Iran. Toxin Rev. 35(1–2):16–23. doi:10.1080/15569543.2016.1181656.
  • Nelson K. 1977. Industrial contributions of arsenic to the environment. Environ Health Perspect. 19:31–34. doi:10.1289/ehp.771931.
  • Purvis O, Williamson B, Spiro B, Udachin V, Mikhailova I, Dolgopolova A. 2013. Lichen monitoring as a potential tool in environmental forensics: case study of the Cu smelter and former mining town of Karabash, Russia. Geol Soc Spec Publ. 384(1):133–146. doi:10.1144/SP384.6.
  • Rahman Z, Singh VP. 2019. The relative impact of toxic heavy metals (THMs) arsenic (As), cadmium (Cd), chromium (Cr)(vi), mercury (Hg), and lead (Pb) on the total environment: an overview. Environ Monit Assess. 191(7):1–21. doi:10.1007/s10661-019-7528-7.
  • Rastmanesh F, Moore F, Kharrati Kopaei M, Keshavarzi B, Behrouz M. 2011. Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environ Earth Sci. 62(2):329–336. doi:10.1007/s12665-010-0526-2.
  • Rizzio E, Bergamaschi L, Valcuvia M, Profumo A, Gallorini M. 2001. Trace elements determination in lichens and in the airborne particulate matter for the evaluation of the atmospheric pollution in a region of northern Italy. Environ Int. 26(7–8):543–549. doi:10.1016/S0160-4120(01)00037-X.
  • Rogula-Kozłowska W. 2016. Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Health. 9(5):533–550. doi:10.1007/s11869-015-0359-y.
  • Salih Z, Aziz F. 2020. Heavy metal accumulation in dust and workers’ scalp hair as a bioindicator for air pollution from a steel factory. Pol J Environ Stud. 29(2):1805. doi:10.15244/pjoes/109724.
  • Salo H, Bućko MS, Vaahtovuo E, Limo J, Mäkinen J, Pesonen LJ. 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J Geochem Explor. 115:69–81. doi:10.1016/j.gexplo.2012.02.009.
  • Sardar SB, Fine PM, Sioutas C. 2005. Seasonal and spatial variability of the size-resolved chemical composition of particulate matter (PM 10) in the Los Angeles Basin. J Geophys Res Atmos. 110(D7):D7. doi:10.1029/2004JD004627.
  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J. 2008. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut. 156(2):251–260. doi:10.1016/j.envpol.2008.02.027.
  • Singh M, Thind PS, John S. 2018. Health risk assessment of the workers exposed to the heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. Chemosphere. 203:426–433. doi:10.1016/j.chemosphere.2018.03.138.
  • Smith KR, Bruce N, Balakrishnan K, Adair-Rohani H, Balmes J, Chafe Z, Dherani M, Hosgood HD, Mehta S, Pope D, et al. 2014. Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu Rev Public Health. 35(1):185–206. doi:10.1146/annurev-publhealth-032013-182356.
  • Taneja S, Sharma N, Oberoi K, Navoria Y. 2016. Predicting trends in air pollution in Delhi using data mining. 2016 1st India international conference on information processing (IICIP). IEEE. doi:10.1109/IICIP.2016.7975379.
  • Tan SY, Praveena SM, Abidin EZ, Cheema MS. 2016. A review of heavy metals in indoor dust and its human health-risk implications. Rev Environ Health. 31(4):447–456. doi:10.1515/reveh-2016-0026.
  • Urrutia-Goyes R, Hernandez N, Carrillo-Gamboa O, Nigam K, Ornelas-Soto N. 2018. Street dust from a heavily-populated and industrialized city: evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicol Environ Saf. 159:198–204. doi:10.1016/j.ecoenv.2018.04.054.
  • USEPA. 2002. Child specific exposure factors handbook. EPA-600-P-00-002B. In: national Center for Environmental Assessment. Washington, DC.
  • USEPAU. 1997. Environmental protection agency. exposure factors handbook volume 1. USEPA office of research and development. EPA/600/P-95/002.
  • van den Berg R. 1994. Human exposure to soil contamination: a qualitative and quantitative analysis towards proposals for human toxicological intervention values (partly revised edition). RIVM Rapport 725201011.
  • Winkler A, Contardo T, Vannini A, Sorbo S, Basile A, Loppi S (2020). Magnetic emissions from brake wear are the major source of airborne particulate matter bioaccumulated by lichens exposed in Milan (Italy). Applied Sciences, 10(6), 2073.
  • Wolterbeek B. 2002. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut. 120(1):11–21. doi:10.1016/S0269-7491(02)00124-0.
  • World Health Organization. (2016). Ambient air pollution: A global assessment of exposure and burden of disease.
  • Zhaoyong Z, Xiaodong Y, Simay Z, Mohammed A. 2018. Health risk evaluation of heavy metals in green land soils from urban parks in Urumqi, northwest China. Environ Sci Pollut Res. 25(5):4459–4473. doi:10.1007/s11356-017-0737-0.
  • Zheng N, Liu J, Wang Q, Liang Z. 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ. 408(4):726–733. doi:10.1016/j.scitotenv.2009.10.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.