169
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Concentration and non-dietary human health risk assessment of pesticide residues in soil of farms in Golestan province, Iran

, , , , , & ORCID Icon show all
Pages 968-978 | Received 22 Oct 2022, Accepted 15 Mar 2023, Published online: 26 Mar 2023

References

  • Acosta-Dacal A, Rial-Berriel C, Díaz-Díaz R, Del Mar Bernal-Suárez M, Luzardo OP. 2021. Optimization and validation of a QuEChERS-based method for the simultaneous environmental monitoring of 218 pesticide residues in clay loam soil. Sci Total Environ. 753:142015. doi:10.1016/j.scitotenv.2020.142015.
  • Atamaleki A, Yazdanbakhsh A, Fallah S, Hesami M, Neshat A, Fakhri Y. 2021. Accumulation of potentially harmful elements (PHEs) in lettuce (Lactuca sativa L.) and coriander (Coriandrum sativum L.) irrigated with wastewater: a systematic review and meta-analysis and probabilistic health risk assessment. Environ Sci Pollut Res. 28(11):13072–13082. doi:10.1007/s11356-020-12105-z.
  • Azadbakht M, Safieddin Ardebili SM, Rahmani M. 2021. Potential for the production of biofuels from agricultural waste, livestock, and slaughterhouse waste in Golestan province, Iran. Biomass Convers. Biorefin. 3:3123–3133.
  • Bhandari G, Atreya K, Scheepers PT, Geissen V. 2020a. Concentration and distribution of pesticide residues in soil: non-dietary human health risk assessment. Chemosphere. 253:126594. doi:10.1016/j.chemosphere.2020.126594.
  • Bhandari G, Atreya K, Scheepers PTJ, Geissen V. 2020b. Concentration and distribution of pesticide residues in soil: non-dietary human health risk assessment. Chemosphere. 253:126594. doi:10.1016/j.chemosphere.2020.126594.
  • Bhandari G, Atreya K, Vašíčková J, Yang X, Geissen V. 2021. Ecological risk assessment of pesticide residues in soils from vegetable production areas: a case study in S-Nepal. Sci Total Environ. 788:147921. doi:10.1016/j.scitotenv.2021.147921.
  • Cai S, Zeng B, Li C. 2023. Potential health risk assessment of metals in the muscle of seven wild fish species from the Wujiangdu reservoir, China. Qual. Assur. Saf. Crops Foods. 15(1):73–83. doi:10.15586/qas.v15i1.1121.
  • Cengiz MF, Başlar M, Basançelebi O, Kılıçlı M. 2018. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications. Food Chem. 267:60–66. doi:10.1016/j.foodchem.2017.08.031.
  • Chattopadhyay S, Chattopadhyay D. 2015. Remediation of DDT and its metabolites in contaminated sediment. Curr Pollut Rep. 1(4):248–264. doi:10.1007/s40726-015-0023-z.
  • Commission E. 2019. European commission directorate general for health and food safety. Austria: European Union.
  • EPA. 2000. United states environmental protection agency (U.S. EPA) (2000). Washington, DC: Risk characterization handbook. EPA 100-B-00-002.
  • Eudoxie G, Mathurin G, Lopez V, Perminova O. 2019. Assessment of pesticides in soil from obsolete pesticides stores: a caribbean case study. Environ Monit Assess. 191(8):1–9. doi:10.1007/s10661-019-7612-z.
  • Fakhri Y, Hoseinvandtabar S, Heidarinejad Z, Borzoei M, Bagheri M, Dehbandi R, Thai VN, Mousavi Khaneghah AM. 2021. The concentration of potentially hazardous elements (PHEs) in the muscle of blue crabs (Callinectes sapidus) and associated health risk. Chemosphere. 279:130431. doi:10.1016/j.chemosphere.2021.130431.
  • Gao L, Huang X, Wang P, Chen Z, Hao Q, Bai S, Tang S, Li C, Qin D. 2022. Concentrations and health risk assessment of 24 residual heavy metals in Chinese mitten crab (Eriocheir sinensis). Qual. Assur. Saf. Crops Foods. 14(1):82–91. doi:10.15586/qas.v14i1.1034.
  • Ge D, Yuan H, Xiao J, Zhu N. 2019. Insight into the enhanced sludge dewaterability by tannic acid conditioning and pH regulation. Sci Total Environ. 679:298–306. doi:10.1016/j.scitotenv.2019.05.060.
  • Hashemi SM, Rostami R, Hashemi MK, Damalas CA. 2012. Pesticide use and risk perceptions among farmers in Southwest Iran. Human Ecolog Risk Assess: Int J. 18(2):456–470. doi:10.1080/10807039.2012.652472.
  • Hasnaki R, Ziaee M, Mahdavi V. 2023. Pesticide residues in corn and soil of corn fields of Khuzestan, Iran, and potential health risk assessment. J Food Compos Anal. 115:104972. doi:10.1016/j.jfca.2022.104972.
  • Heshmati A, Khorshidi M, Mousavi Khaneghah A. 2021. The prevalence and risk assessment of aflatoxin in sesame based products. Ital. J. Food Sci. 33(SP1):92–102. doi:10.15586/ijfs.v33iSP1.2065.
  • Heshmati A, Mehri F, Mousavi Khaneghah A. 2021. Simultaneous multi-determination of pesticide residues in black tea leaves and infusion: a risk assessment study. Environ Sci Pollut Res. 28(11):13725–13735. doi:10.1007/s11356-020-11658-3.
  • Ibrahim EA, Shalaby SE. 2022. Screening and assessing of pesticide residues and their health risks in vegetable field soils from the Eastern Nile Delta, Egypt. Toxicol Rep. 9:1281–1290. doi:10.1016/j.toxrep.2022.06.004.
  • Jafari K, Fathabad AE, Fakhri Y, Shamsaei M, Miri M, Farahmandfar R, Khaneghah AM. Aflatoxin M. 2021. in traditional and industrial pasteurized milk samples from Tiran County, Isfahan Province: a probabilistic health risk assessment. Italian Journal of Food Science. Jul 13;33(SP1):103–16.
  • Joseph L, Paulose SV, Cyril N, Santhosh SK, Varghese A, Nelson AB, Kunjankutty SV, Kasu S. 2020. Organochlorine pesticides in the soils of cardamom hill reserve (CHR), Kerala, India: geo spatial distribution, ecological and human health risk assessment. Environ Chem Ecotoxicol. 2:1–11. doi:10.1016/j.enceco.2020.01.001.
  • Kafaei R, Arfaeinia H, Savari A, Mahmoodi M, Rezaei M, Rayani M, Sorial GA, Fattahi N, Ramavandi B. 2020. Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere. 240:124983. doi:10.1016/j.chemosphere.2019.124983.
  • Kumar B, Verma VK, Mishra M, Kumar S, Sharma CS, Akolkar AB. 2014. Persistent organic pollutants in residential soils of North India and assessment of human health hazard and risks. Toxicol Environ Chem. 96(2):255–272. doi:10.1080/02772248.2014.923427.
  • Li Z. 2021. Regulation of pesticide soil standards for protecting human health based on multiple uses of residential soil. J Environ Manage. 297:113369. doi:10.1016/j.jenvman.2021.113369.
  • Li Q, Lu Y, Wang P, Wang T, Suriyanarayanan S, Liang R, Baninla Y, Khan K, Zhang Y. 2018. Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the yellow and Bohai Seas, China. Environ Pollut. 239:233–241. doi:10.1016/j.envpol.2018.03.055.
  • Lin X, Lu K, Hardison AK, Liu Z, Xu X, Gao D, Gong J, Gardner WS. 2021. Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments. Ecol Indic. 126:107639. doi:10.1016/j.ecolind.2021.107639.
  • Liu Z, Ying H, Chen M, Bai J, Xue Y, Yin Y, Batchelor WD, Yang Y, Bai Z, Du M, et al. 2021. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food. 2(6):426–433. doi:10.1038/s43016-021-00300-1.
  • Liu Y, Zhang K, Li Z, Liu Z, Wang J, Huang P. 2020. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J Hydrol. 590:125440. doi:10.1016/j.jhydrol.2020.125440.
  • Li Q, Wu J, Sakiev K. 2019. Organochlorine pesticides (OCPs) in soils near and around lake son-kul in the western Tian Shan mountains, Central Asia. J Soils Sediments. 19(4):1685–1696. doi:10.1007/s11368-018-2163-4.
  • Luo C, Sun J, Tan Y, Xiong L, Peng B, Peng G, Bai X. 2022. Comparison of the health risks associated with exposure to toxic metals and metalloids following consumption of freshwater catches in China. Qual. Assur. Saf. Crops Foods. 14(4):1–12. doi:10.15586/qas.v14i4.1117.
  • Madanayake N H, Hossain A, Adassooriya N M. 2021. Nanobiotechnology for agricultural sustainability, and food and environmental safety. uality assurance and safety of crops & foods. 13(1):20–36. doi:10.15586/qas.v13i1.838.
  • Mahdavi V, Eslami Z, Molaee-Aghaee E, Peivasteh-Roudsari L, Sadighara P, Fakhri Y, Ravanlou AA, Thai VN. 2022. Evaluation of pesticide residues and risk assessment in apple and grape from western azerbaijan Province of Iran. Environ Res. 203:111882. doi:10.1016/j.envres.2021.111882.
  • Mahdavi V, Heris MES, Dastranj M, Farimani MM, Eslami Z, Aboul-Enein HY. 2021. Assessment of pesticide residues in soils using a QuEChERS extraction procedure and LC-MS/MS. Water, Air, Soil Pollut. 232(4):1–10. doi:10.1007/s11270-021-05104-4.
  • mFAOSTAT. 2020. Pesticides use. Australia: FAO.
  • Morteza Z, Mousavi SB, Baghestani MA, Aitio A. 2017. An assessment of agricultural pesticide use in Iran, 2012-2014. J Environ Health Sci Engg. 15(1):10. doi:10.1186/s40201-017-0272-4.
  • Nabhan KJ, Khalik WMAWM, Abdullah MP, Othman MR, Isahak A, Zulkepli SA. 2018. Assessment of multiresidue pesticides in agricultural soils from ledang, Malaysia and related potential health risks. Nat Environ Pollut Technol. 17(1):99–106.
  • Nematollahi A, Abdi L, Abdi-Moghadam Z, Fakhri Y, Borzoei M, Tajdar-Oranj B, Thai VN, Linh NTT, Mousavi Khaneghah A. 2021. The concentration of potentially toxic elements (PTEs) in sausages: a systematic review and meta-analysis study. Environ Sci Pollut Res. 28(39):55186–55201. doi:10.1007/s11356-021-14879-2.
  • Pan D, Chen H. 2021. Border pollution reduction in China: the role of livestock environmental regulations. China Econ Rev. 69:101681. doi:10.1016/j.chieco.2021.101681.
  • Pan L, Sun J, Li Z, Zhan Y, Xu S, Zhu L. 2018. Organophosphate pesticide in agricultural soils from the yangtze river delta of China: concentration, distribution, and risk assessment. Environ Sci Pollut Res. 25(1):4–11. doi:10.1007/s11356-016-7664-3.
  • Qu C, Qi S, Yang D, Huang H, Zhang J, Chen W, Yohannes HK, Sandy EH, Yang J, Xing X. 2015. Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: a case study from Ningde, southeast China. J Geochem Explor. 149:43–51. doi:10.1016/j.gexplo.2014.11.002.
  • Rafique N, Tariq SR, Ahmed D. 2016. Monitoring and distribution patterns of pesticide residues in soil from cotton/wheat fields of Pakistan. Environ Monit Assess. 188(12):1–12. doi:10.1007/s10661-016-5668-6.
  • Rasool S, Rasool T, Gani KM. 2022. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem Engg J Adv. 11:100301. doi:10.1016/j.ceja.2022.100301.
  • Silva V, Mol HG, Zomer P, Tienstra M, Ritsema CJ, Geissen V. 2019. Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci Total Environ. 653:1532–1545. doi:10.1016/j.scitotenv.2018.10.441.
  • Singh BK, Walker A, Wright DJ. 2006. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biol Biochem. 38(9):2682–2693. doi:10.1016/j.soilbio.2006.04.019.
  • Stenersen J. 2004. Chemical pesticides mode of action and toxicology. Florida: CRC Press.
  • Sun J, Pan L, Tsang DC, Li Z, Zhu L, Li X. 2018. Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environ Sci Pollut Res. 25(1):34–42. doi:10.1007/s11356-016-7725-7.
  • Tan H, Li Q, Zhang H, Wu C, Zhao S, Deng X, Li Y. 2020. Pesticide residues in agricultural topsoil from the hainan tropical riverside basin: determination, distribution, and relationships with planting patterns and surface water. Sci Total Environ. 722:137856. doi:10.1016/j.scitotenv.2020.137856.
  • Tongjai P, Hongsibsong S, Sapbamrer R. 2021. The efficiency of various household processing for removing chlorpyrifos and cypermethrin in Chinese kale and Pakchoi. Qual. Assur. Saf. Crops Foods. 13(3):45–52. doi:10.15586/qas.v13i3.913.
  • Vašíčková J, Hvězdová M, Kosubová P, Hofman J. 2019. Ecological risk assessment of pesticide residues in arable soils of the czech republic. Chemosphere. 216:479–487. doi:10.1016/j.chemosphere.2018.10.158.
  • Vryzas Z. 2018. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr Opinion Environ Sci Health. 4:5–9. doi:10.1016/j.coesh.2018.03.001.
  • Wang X, Du T, Ma Y, Yu M. 2021. Logistics cost control in food processing enterprises based on TD-ABC. J Comput Methods Sci Engg. 21(6):1–20. doi:10.3233/JCM-215464.
  • Wang J, Wei D, Deng Y, Feng W, Gao Q, Shi Y, Xiao J. 2021. Bioaccessibility and health risk of neonicotinoids in apple and pear samples as affected by in vitro digestion. Qual. Assur. Saf. Crops Foods. 13(3):74–81. doi:10.15586/qas.v13i3.946.
  • Wong HL, Garthwaite DG, Ramwell CT, Brown CD. 2017. How does exposure to pesticides vary in space and time for residents living near to treated orchards? Environ Sci Pollut Res. 24(34):26444–26461. doi:10.1007/s11356-017-0064-5.
  • Yadav IC, Devi NL, Li J, Zhang G, Shakya PR. 2016. Occurrence, profile and spatial distribution of organochlorines pesticides in soil of Nepal: implication for source apportionment and health risk assessment. Sci Total Environ. 573:1598–1606. doi:10.1016/j.scitotenv.2016.09.133.
  • Yang K, Geng Q, Luo Y, Xie R, Sun T, Wang Z, Qin L, Zhao W, Liu M, Li Y, et al. 2022. Dysfunction of FadA‐cAMP signalling decreases aspergillus flavus resistance to antimicrobial natural preservative perillaldehyde and AFB1 biosynthesis. Environ Microbiol. 24(3):1590–1607. doi:10.1111/1462-2920.15940.
  • Yao S, Huang J, Zhou H, Cao C, Ai T, Xing H, Sun J. 2022. Levels, distribution and health risk assessment of organochlorine pesticides in agricultural soils from the pearl river delta of China. Int J Environ Res Public Health. 19(20):13171. doi:10.3390/ijerph192013171.
  • Zhao L, Du M, Du W, Guo J, Liao Z, Kang X, Liu Q. 2022. Evaluation of the carbon sink capacity of the proposed kunlun mountain national park. Int J Environ Res Public Health. 19(16):9887. doi:10.3390/ijerph19169887.
  • Zhongming Z, Linong L, Xiaona Y, Wangqiang Z, Wei L. 2021. Environmental and health impacts of pesticides and fertilizers and ways of minimizing them. 5:15–23 .
  • Zhou M, Tang T, Qin D, Cheng H, Wang X, Chen J, Wågberg T, Hu G. 2023. Hematite nanoparticle decorated MIL-100 for the highly selective and sensitive electrochemical detection of trace-level paraquat in milk and honey. Sens Actuat B Chem. 376:132931. doi:10.1016/j.snb.2022.132931.
  • Zhu X, Liu W, Chen J, Bruijnzeel LA, Mao Z, Yang X, Cardinael R, Meng FR, Sidle RC, Seitz S, et al. 2020. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant Soil. 453(1):45–86. doi:10.1007/s11104-019-04377-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.