222
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Application of molecularly imprinted polymers as the sorbent for extraction of chemical contaminants from milk

, ORCID Icon, , & ORCID Icon
Pages 2015-2030 | Received 19 Feb 2023, Accepted 24 Apr 2023, Published online: 28 Apr 2023

References

  • Akgönüllü S, Yavuz H, Denizli A. 2021. Development of gold nanoparticles decorated molecularly imprinted–based plasmonic sensor for detecting aflatoxin M1 in milk samples. Chemosensors. 9(12):363. doi:10.3390/chemosensors9120363.
  • Anirudhan T, Christa J, Deepa J. 2017. Extraction of melamine from milk using a magnetic molecularly imprinted polymer. Food Chem. 227:85–92. doi:10.1016/j.foodchem.2016.12.090.
  • Ashley J, Shahbazi M-A, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y. 2017. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron. 91:606–615. doi:10.1016/j.bios.2017.01.018.
  • Baeza A, Urraca J, Chamorro R, Orellana G, Castellari M, Moreno-Bondi M. 2016. Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1474:121–129. doi:10.1016/j.chroma.2016.10.069.
  • Bahramian B, Sani MA, Parsa-Kondelaji M, Hosseini H, Khaledian Y, Rezaie M. 2022. Antibiotic residues in raw and pasteurized milk in Iran: a systematic review and meta-analysis. AIMS Agric Food. 7(3):500–519. doi:10.3934/agrfood.2022031.
  • Barros SC, Silva AS, Torres D. 2023. Multiresidues multiclass analytical methods for determination of antibiotics in animal origin food: a critical analysis. Antibiotics. 12(2):202. doi:10.3390/antibiotics12020202.
  • Basak S, Venkatram R, Singhal RS. 2022. Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control. 139:109074. doi:10.1016/j.foodcont.2022.109074.
  • Baumrucker CR, Macrina AL. 2020. Hormones and Regulatory Factors in Bovine Milk. Reference Module in Food Science. Elsevier.
  • Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M, Boukherroub R. 2023. Fabrication of a novel electrochemical biosensor based on a molecular imprinted polymer-aptamer hybrid receptor for lysozyme determination. Anal Bioanal Chem. 415(5):899–911. doi:10.1007/s00216-022-04487-5.
  • BelBruno JJ. 2018. Molecularly imprinted polymers. Chem Rev. 119(1):94–119. doi:10.1021/acs.chemrev.8b00171.
  • Calatayud-Sáez FM. 2022. The traditional Mediterranean diet is effective in the prevention and treatment of acute and recurrent inflammatory diseases of childhood. Allergol Immunopathol (Madr). 50(2):93–95. doi:10.15586/aei.v50i2.565.
  • Cheng W, Liu Z, Wang Y. 2013. Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples. Talanta. 116:396–402. doi:10.1016/j.talanta.2013.05.067.
  • Chen Y, Ma X, Peng J. 2021. Highly selective removal and recovery of Ni (II) from aqueous solution using magnetic ion-imprinted chitosan nanoparticles. Carbohydr Polym. 271:118435. doi:10.1016/j.carbpol.2021.118435.
  • de Faria DPB, de Sillos MD, Speridião PDGL, de Morais MB. 2023. Real-life data on the effectiveness of extensively hydrolyzed protein-based formula and amino acid–based formula in regaining weight and height in infants on a cow’s milk protein elimination diet. Allergol Immunopathol (Madr). 51(2):177–183. doi:10.15586/aei.v51i2.768.
  • de Faria DPB, Sillos MD, Speridião PDGL, de Morais MB. 2022. Outcome of food intake and nutritional status after discontinuation of a cow’s-milk-free diet post negative oral food challenge in infants and children. Allergol Immunopathol (Madr). 50(1):1–8. doi:10.15586/aei.v50i1.471.
  • Ding W, Wang X, Liu T, Gao M, Qian F, Gu H, Zhang Z. 2019. Preconcentration/Extraction of trace bisphenols in milks using a novel effervescent reaction-assisted dispersive solid-phase extraction based on magnetic nickel-based N-doped graphene tubes. Microchem J. 150:104109. doi:10.1016/j.microc.2019.104109.
  • Dorieh A, Pour MF, Movahed SG, Pizzi A, Selakjani PP, Kiamahalleh MV, Hatefnia H, Shahavi MH, Aghaei R. 2022. A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials. Prog Org Coat. 165:106768. doi:10.1016/j.porgcoat.2022.106768.
  • Ensina LF, Felix MMR, da Cunha FS, Caubet J-C. 2022. Desensitization to drugs in children. Allergol Immunopathol (Madr). 50(2):48–57. doi:10.15586/aei.v50i2.539.
  • Frachowicz-Guerreiro K, Wardzyńska A, Kowalski ML. 2022. Allergy clinic patients’ drug hypersensitivity. Allergol Immunopathol (Madr). 50(3):77–84. doi:10.15586/aei.v50i3.10.
  • Gañán J, Morante-Zarcero S, Gallego-Picó A, Garcinuño RM, Fernández-Hernando P, Sierra I. 2014. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion. Talanta. 126:157–162. doi:10.1016/j.talanta.2014.03.041.
  • Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. 2016. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem. 194:1040–1047. doi:10.1016/j.foodchem.2015.08.112.
  • Gholami H, Arabi M, Ghaedi M, Ostovan A, Bagheri AR. 2019. Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples. J Chromatogr A. 1594:13–22. doi:10.1016/j.chroma.2019.02.015.
  • Guetouache M, Guessas B, Medjekal S. 2014. Composition and nutritional value of raw milk. Issues Biol Sci Pharm Res. 2350:1588. doi:10.15739/ibspr.005.
  • Guo L, Ma X, Xie X, Huang R, Zhang M, Li J,Zeng G, Fan Y. 2019. Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chem Eng J. 361:245–255. doi:10.1016/j.cej.2018.12.076.
  • Guzmán-Vázquez de Prada A, Martínez-Ruiz P, Reviejo AJ, Pingarrón JM. 2005. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Anal Chim Acta. 539(1):125–132. doi:10.1016/j.aca.2005.02.068.
  • Hashemi M, Nazari Z. 2018. Preparation of molecularly imprinted polymer based on the magnetic multiwalled carbon nanotubes for selective separation and spectrophotometric determination of melamine in milk samples. J Food Compos Anal. 69:98–106. doi:10.1016/j.jfca.2018.02.010.
  • Hassan SS, Kamel AH, Fathy MA. 2022. A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Anal Chim Acta. 1227:340239. doi:10.1016/j.aca.2022.340239.
  • He D, Zhang X, Gao B, Wang L, Zhao Q, Chen H, Wang H, Zhao C. 2014. Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from milk followed by liquid chromatography-tandem mass spectrometry. Food Control. 36(1):36–41. doi:10.1016/j.foodcont.2013.07.044.
  • Hong L, Pan M, Yang X, Xie X, Liu K, Yang J, Wang S, Wang S. 2022. A UCMPs@ MIL-100 based thermo-sensitive molecularly imprinted fluorescence sensor for effective detection of β-lactoglobulin allergen in milk products. J Nanobiotechnology. 20(1):1–12. doi:10.1186/s12951-022-01258-3.
  • Hua Y, Ahmadi Y, Sonne C, Kim K-H. 2022. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. Environ Pollut. 305:119218. doi:10.1016/j.envpol.2022.119218.
  • Hu Y, Feng S, Gao F, Li-Chan EC, Grant E, Lu X. 2015. Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 176:123–129. doi:10.1016/j.foodchem.2014.12.051.
  • Hu Y, Wang Y, Hu Y, Li G. 2009. Liquid–liquid–solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples. J Chromatogr A. 1216(47):8304–8311. doi:10.1016/j.chroma.2009.09.063.
  • Jafari S, Dehghani M, Nasirizadeh N, Baghersad MH, Azimzadeh M. 2019. Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite. Measurement. 145:22–29. doi:10.1016/j.measurement.2019.05.068.
  • Jalili R, Khataee A, Rashidi M-R, Razmjou A. 2020. Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chem. 314:126172. doi:10.1016/j.foodchem.2020.126172.
  • Jeena S, Venkateswaramurthy N, Sambathkumar R. 2020. Antibiotic residues in milk products: impacts on human health. Res J Pahrmacol Pharmacodyn. 12(1):15–20. doi:10.5958/2321-5836.2020.00004.X.
  • Kamaruzaman S, Nasir NM, Mohd Faudzi SM, Yahaya N, Mohamad Hanapi NS, Wan Ibrahim WN. 2021. Solid-phase extraction of active compounds from natural products by molecularly imprinted polymers: synthesis and extraction parameters. Polymers. 13(21):3780. doi:10.3390/polym13213780.
  • Karakurt T, Bozkurt HB, Kaplan F, Akşit A, Cavkaytar Ö, Topal E, Arga M. 2022. Experiences and attitudes of parents of children with cow’s milk and other food-allergy. Allergol Immunopathol (Madr). 50(4):77–82. doi:10.15586/aei.v50i4.435.
  • Kilic M, Çilkol L, Taşkın E. 2021. Evaluation of some predictive parameters for baked-milk tolerance in children with cow’s milk allergy. Allergol Immunopathol (Madr). 49(2):53–59. doi:10.15586/aei.v49i2.64.
  • Kitsos N, Cassimos D, Xinias I, Agakidis C, Mavroudi A. 2022. Management of antibiotic allergy in children: a practical approach. Allergol Immunopathol (Madr). 50(5):30–38. doi:10.15586/aei.v50i5.607.
  • Korale-Gedara P, Weerahewa J, Roy D. 2023. Food safety in milk: adoption of food safety practices by small-scale dairy farmers in Sri Lanka and their determinants. Food Control. 143:109274. doi:10.1016/j.foodcont.2022.109274.
  • Lata K, Sharma R, Naik L, Rajput Y, Mann B. 2015. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chem. 184:176–182. doi:10.1016/j.foodchem.2015.03.101.
  • Li Z, Lei C, Wang N, Jiang X, Zeng Y, Fu Z, Zou L, He L, Liu S, Ao X, et al. 2018. Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. J Chromatogr B. 1100:113–121. doi:10.1016/j.jchromb.2018.09.032.
  • Liu H, Qiao L, Gan N, Lin S, Cao Y, Hu F, Wang J, Chen Y. 2016. Electro-deposited poly-luminol molecularly imprinted polymer coating on carboxyl graphene for stir bar sorptive extraction of estrogens in milk. J Chromatogr B. 1027:50–56. doi:10.1016/j.jchromb.2016.05.022.
  • Lv YK, Wang LM, Yang L, Zhao CX, Sun HW. 2012. Synthesis and application of molecularly imprinted poly (methacrylic acid)–silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A. 1227:48–53.
  • Mangsi AS, Shah MG, Soomro AH, Khaskheli AA, Lund AK. 2021. 16. Improvement in fermentation process and curd quality of yoghurt made from antimicrobial drug added milk. Pure Appl Biol. 10(3):738–743. doi:10.19045/bspab.2021.100075.
  • Mao K, Li D, Liu J, Sun J, Zhang R. 2022. Investigation of serum IL-12, IL-16, and IL-17A as diagnostic biomarkers in children with cow’s milk protein allergy. Allergol Immunopathol (Madr). 50(5):162–168. doi:10.15586/aei.v50i5.592.
  • Mayor MG, González GP, Martínez RG, Hernando PF, Alegría JD. 2017. Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk. Food Chem. 221:721–728. doi:10.1016/j.foodchem.2016.11.114.
  • Merritt RJ, Fleet SE, Fifi A, Jump C, Schwartz S, Sentongo T, Duro D, Rudolph J, Turner J. 2020. North American society for pediatric gastroenterology, hepatology, and nutrition position paper: plant-based milks. J Pediatr Gastroenterol Nutr. 71(2):276–281. doi:10.1097/MPG.0000000000002799.
  • Mohan B, Singh G, Pombeiro AJ, Solovev AA, Sharma PK, Chen Q. 2023. Metal-organic frameworks (MOFs) for milk safety and contaminants monitoring. TrAc, Trends Anal Chem. 159:116921. doi:10.1016/j.trac.2023.116921.
  • Moral L, Latorre S, Toral T, Marco N, Canals F, Forniés MJ, González MC, García-Avilés B. 2022. Positive drug provocation with beta-lactam antibiotics in children: a single test may not be enough. Allergol Immunopathol (Madr). 50(5):148–152. doi:10.15586/aei.v50i5.642.
  • Negarian M, Mohammadinejad A, Mohajeri SA. 2019. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem. 288:29–38. doi:10.1016/j.foodchem.2019.02.087.
  • Onyeaka H, Anumudu CK, Okolo CA, Anyogu A, Odeyemi O, Bassey AP. 2022. A review of the top 100 most cited papers on food safety. Qual Assur Saf Crop. 14(4):91–104. doi:10.15586/qas.v14i4.1124.
  • Pires RC, Portinari MR, Moraes GZ, Khaneghah AM, Gonçalves BL, Rosim RE, Oliveira CA, Corassin CH. 2022. Evaluation of Anti-Aflatoxin M1 effects of heat-killed cells of Saccharomyces cerevisiae in Brazilian commercial yogurts. Qual Assur Saf Crop. 14(1):75–81. doi:10.15586/qas.v14i1.1006.
  • Popielarz M, Krogulska A. 2021. The importance of component-resolved diagnostics in IgE-mediated cow’s milk allergy. Allergol Immunopathol (Madr). 49(3):30–41. doi:10.15586/aei.v49i3.74.
  • Quesada-Molina C, Claude B, García-Campaña AM, Del Olmo-Iruela M, Morin P. 2012. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem. 135(2):775–779. doi:10.1016/j.foodchem.2012.05.014.
  • Reville E, Sylvester E, Benware S, Negi S, Berda EB. 2022. Customizable molecular recognition: advancements in design, synthesis, and application of molecularly imprinted polymers. Polym Chem. 13(23):3387–3411. doi:10.1039/D1PY01472B.
  • Roba HM. 2023. Review on antimicrobial residue occurrence in cow milk and its public health importance in Ethiopia. Arch Nutr Public Health. 5(1):1–15.
  • Roland RM, Bhawani SA, Wahi R, Ibrahim MNM. 2020. Synthesis, characterization, and application of molecular imprinting polymer for extraction of melamine from spiked milk, water, and blood serum. J Liq Chromatogr Relat Technol. 43(3–4):94–105. doi:10.1080/10826076.2019.1672077.
  • Roushani M, Rahmati Z, Hoseini SJ, Fath RH. 2019. Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle. Colloids Surf B Biointerfaces. 183:110451. doi:10.1016/j.colsurfb.2019.110451.
  • Salahshoor Z, Ho K-V, Hsu S-Y, Lin C-H, de Cortalezzi MF. 2022. Detection of Atrazine and its metabolites by photonic molecularly imprinted polymers in aqueous solutions. Chem Eng J Adv. 12:100368. doi:10.1016/j.ceja.2022.100368.
  • Shaikh JR, Patil M. 2020. Drug residues in milk and milk products: sources, public health impact, prevention and control. Int J Livest Res. 10(0):24–36. doi:10.5455/ijlr.20200410024336.
  • Shi LL, Hang JG, Lou J, Dong JJ, Feng H, Wang Z, Shen B, Nakayama SF, Kido T, Ma C, et al. 2023. Multiple exposures to heavy metals and changes in steroid hormones production in 4-year-old children. J Expo Sci Environ Epidemiol. 1–9. doi:10.1038/s41370-023-00539-9.
  • Soledad-Rodríguez B, Fernández-Hernando P, Garcinuño-Martínez R, Durand-Alegría J. 2017. Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chem. 224:432–438. doi:10.1016/j.foodchem.2016.11.097.
  • Sundhoro M, Agnihotra SR, Amberger B, Augustus K, Khan ND, Barnes A, BelBruno J, Mendecki L. 2021. An electrochemical molecularly imprinted polymer sensor for rapid and selective food allergen detection. Food Chem. 344:128648. doi:10.1016/j.foodchem.2020.128648.
  • Syed Yaacob SFF, Suwaibatu M, Raja Jamil RZ, Mohamed Zain NN, Raoov M, Mohd Suah FB. 2023. Review of molecular imprinting polymer: basic characteristics and removal of phenolic contaminants based on the functionalized cyclodextrin monomer. J Chem Technol Biotechnol. 98(2):312–330. doi:10.1002/jctb.7215.
  • Tang J, Wang J, Yuan L, Xiao Y, Yang Z, Yang Z. 2019. Trace analysis of estrogens in milk samples by molecularly imprinted solid phase extraction with genistein as a dummy template molecule and high-performance liquid chromatography–tandem mass spectrometry. Steroids. 145:23–31. doi:10.1016/j.steroids.2019.02.010.
  • Tarannum N, Khatoon S, Dzantiev BB. 2020. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: a critical review. Food Control. 118:107381. doi:10.1016/j.foodcont.2020.107381.
  • Tian H, Liu T, Mu G, Chen F, He M, You S, Yang M, Li Y, Zhang F. 2020. Rapid and sensitive determination of trace fluoroquinolone antibiotics in milk by molecularly imprinted polymer-coated stainless steel sheet electrospray ionization mass spectrometry. Talanta. 219:121282. doi:10.1016/j.talanta.2020.121282.
  • Turiel E, Esteban AM. 2020. Molecularly imprinted polymers. In: Solid-phase extraction. Elsevier; pp. 215–233. doi:10.1016/B978-0-12-816906-3.00008-X.
  • Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. 2021. Molecularly imprinted polymers for food applications: a review. Trends Food Sci Technol. 111:642–669. doi:10.1016/j.tifs.2021.03.003.
  • Wang S, Geng Y, Sun X, Wang R, Zheng Z, Hou S, Wang X, Ji W. 2020. Molecularly imprinted polymers prepared from a single cross-linking functional monomer for solid-phase microextraction of estrogens from milk. J Chromatogr A. 1627:461400. doi:10.1016/j.chroma.2020.461400.
  • Wang Y, Ma X, Peng Y, Liu Y, Zhang H. 2021. Selective and fast removal and determination of β-lactam antibiotics in aqueous solution using multiple templates imprinted polymers based on magnetic hybrid carbon material. J Hazard Mater. 416:126098. doi:10.1016/j.jhazmat.2021.126098.
  • Włoch M, Datta J. 2019. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive analytical chemistry. Vol. 86, Elsevier; pp. 17–40. doi:10.1016/bs.coac.2019.05.011.
  • Wu-Wu JWF, Guadamuz-Mayorga C, Oviedo-Cerdas D, Zamora WJ. 2023. Antibiotic resistance and food safety: perspectives on new technologies and molecules for microbial control in the food industry. Antibiotics. 12(3):550. doi:10.3390/antibiotics12030550.
  • Xie X, Ma X, Guo L, Fan Y, Zeng G, Zhang M, Li J. 2019. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chem Eng J. 357:56–65. doi:10.1016/j.cej.2018.09.080.
  • Xu X, Liang F, Shi J, Zhao X, Liu Z, Wu L, Song Y, Zhang H, Wang Z. 2013. Determination of hormones in milk by hollow fiber-based stirring extraction bar liquid–liquid microextraction gas chromatography mass spectrometry. Anal Chim Acta. 790:39–46. doi:10.1016/j.aca.2013.06.035.
  • Yan H, Cheng X, Sun N, Cai T, Wu R, Han K. 2012. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection. J Chromatogr B. 908:137–142. doi:10.1016/j.jchromb.2012.09.022.
  • Yang H-H, Zhou W-H, Guo X-C, Chen F-R, Zhao H-Q, Lin L-M, Wang X-R. 2009. Molecularly imprinted polymer as SPE sorbent for selective extraction of melamine in dairy products. Talanta. 80(2):821–825. doi:10.1016/j.talanta.2009.07.067.
  • Zeng G, Liu Y, Ma X, Fan Y. 2021. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water. Front Environ Sci Eng. 15(5):1–12. doi:10.1007/s11783-021-1395-5.
  • Zhao X, Chen L, Li B. 2018. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chem. 255:226–234. doi:10.1016/j.foodchem.2018.02.078.
  • Zheng MM, Gong R, Zhao X, Feng YQ. 2010. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples. J Chromatogr A. 1217(14):2075–2081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.