Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 13, 2018 - Issue 1
610
Views
0
CrossRef citations to date
0
Altmetric
Original Research Paper

Modified Johnson-Cook description of wide temperature and strain rate measurements made on a nickel-base superalloy

, , &
Pages 157-165 | Received 13 Sep 2016, Accepted 16 Oct 2016, Published online: 04 Nov 2016

References

  • Shenoy M, Tjiptowidjojo Y, McDowell D. Microstructure-sensitive modeling of polycrystalline IN 100. Int J Plast. 2008;24:1694–1730.10.1016/j.ijplas.2008.01.001
  • Pollock TM. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power. 2006;22:361–374.10.2514/1.18239
  • Ning YQ, Yao ZK, Liang XM, et al. Flow behavior and constitutive model for Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al superalloy compressed below γ′-transus temperature. Mater Sci Eng A. 2012;551:7–12.10.1016/j.msea.2012.04.042
  • Betteridge W, Shaw SWK. Development of superalloys. Mater Sci Technol. 1987;3:682–694.10.1179/mst.1987.3.9.682
  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2008.
  • Cornet C, Wackermann K, Stöcker C, et al. Effects of temperature and hold time on dynamic strain aging in a nickel based superalloy. Mater High Temp. 2014;31:226–232.10.1179/1878641314Y.0000000018
  • Summers WD, Alabort E, Kontis P, et al. In-situ high-temperature tensile testing of a polycrystalline Nickel-base superalloy. Mater High Temp. 2016;33:1–8.
  • Mazur Z, Luna-Ramirez A, Juarez-Islas JA, et al. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng Fail Anal. 2005;12:474–486.10.1016/j.engfailanal.2004.10.002
  • Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculation. J Appl Phys. 1987;61:1816–1825.10.1063/1.338024
  • Bonder SR, Partom YA. Constitutive equations for elastic–viscoplastic strain harding materials. ASME J Appl Mech. 1975;42:385–389.
  • Follansbee PS, Kocks UF. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 1988;36:81–93.10.1016/0001-6160(88)90030-2
  • Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 1999;47:3705–3720.10.1016/S1359-6454(99)00203-7
  • Nemat-Nasser S, Guo WG. High strain-rate response of commercially pure vanadium. Mech Mater. 2000;32:243–260.10.1016/S0167-6636(99)00056-3
  • Nemat-Nasser S, Guo WG. Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mech Mater. 2003;35:1023–1047.10.1016/S0167-6636(02)00323-X
  • Nemat-Nasser S, Guo WG. Thermomechanical response of HSLA-65 steel plates: experiments and modeling. Mech Mater. 2005;37:379–405.10.1016/j.mechmat.2003.08.017
  • Guo WG, Gao X. On the constitutive modeling of a structural steel over a range of strain rates and temperatures. Mater Sci Eng A. 2013;561:468–476.10.1016/j.msea.2012.10.065
  • Wang JJ, Guo WG, Gao X, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates. Int J Plast. 2015;65:85–107.10.1016/j.ijplas.2014.08.017
  • Liang RQ, Khan AS. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. Int J Plast. 1999;15:963–980.10.1016/S0749-6419(99)00021-2
  • Rusinek A, Klepaczko JR. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast. 2001;17:87–115.10.1016/S0749-6419(00)00020-6
  • Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: 7th International Symposium on Ballistics; 1983; The Hague. p. 541–547.
  • Johnson GR, Holmquist TJ. Evaluation of cylinder-impact test data for constitutive model constants. J Appl Phys. 1988;64:3901–3910.10.1063/1.341344
  • Clausen AH, Børvik T, Hopperstad OS, et al. Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A. 2004;364:260–272.10.1016/j.msea.2003.08.027
  • Erice B, Gálvez F, Cendón DA, et al. Flow and fracture behaviour of FV535 steel at different triaxialities, strain rates and temperatures. Eng Fract Mech. 2012;79:1–17.10.1016/j.engfracmech.2011.08.023
  • Roth CC, Mohr D. Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling. Int J Plast. 2014;56:19–44.10.1016/j.ijplas.2014.01.003
  • Lv ZQ, Huang HZ, Gao HY, et al. Lifetime prediction for turbine discs based on a modified Walker strain model. J Mech Sci Technol. 2015;29:4143–4152.10.1007/s12206-015-0908-1
  • Roy AK, Venkatesh A, Marthandam V, et al. Tensile Deformation of a Nickel-base Alloy at Elevated Temperatures. J Mater Eng Perform. 2008;17:607–611.10.1007/s11665-007-9189-x
  • Sunulahpasic R, Oruc M. Effect of temperature on mechanical properties and type of fracture of superalloys Nimonic 80A. Metalurgija. 2011;50:155–158.
  • Pike LM. Haynes® 282™ alloy – a new wrought superalloy designed for improved creep strength and fabricability. In: ASME Turbo. Expo. Power for Land, Sea and Air. Barcelona: American Society of Mechanical Engineering; 2006. p. 1031–1039.
  • Wang JJ, Guo WG, Su Y, et al. Anomalous behaviors of a single-crystal Nickel-base superalloy over a wide range of temperatures and strain rates. Mech Mater. 2016;94:79–90.10.1016/j.mechmat.2015.11.015
  • Wang JJ, Guo WG, Guo J, et al. The effects of stress triaxiality, temperature and strain rate on the fracture characteristics of a nickel-base superalloy. J Mater Eng Perform. 2016;25:2043–2052.10.1007/s11665-016-2049-9
  • Nemat-Nasser S, Isaacs JB. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and TaW alloys. Acta mater. 1997;45:907–919.10.1016/S1359-6454(96)00243-1
  • Lennon A, Ramesh K. A technique for measuring the dynamic behavior of materials at high temperatures. Int J Plast. 1998;14:1279–1292.10.1016/S0749-6419(98)00056-4
  • Li YL, Guo YZ, Hu H, et al. A critical assessment of high-temperature dynamic mechanical testing of metals. Int J Impact Eng. 2009;36:177–184.10.1016/j.ijimpeng.2008.05.004
  • Kapoor R, Nemat-Nasser S. Determination of temperature rise during high strain rate deformation. Mech Mater. 1998;27:1–12.10.1016/S0167-6636(97)00036-7
  • Pope DP, Ezz SS. Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ′. Int Metals Rev. 1984;29:136–167.
  • Harada H. High temperature materials for gas turbine: the present and future. In: International Gas Turbine Congress; Tokyo, Japan; 2003. p. 2–7.
  • Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metal Mater. 1992;40:1–30.10.1016/0956-7151(92)90195-K
  • Antolovich SD. Microstructural aspects of fatigue in Ni-base superalloys. Philos Trans R Soc A. 2015;373:1–36.10.1098/rsta.2014.0128
  • Portevin A, Le-Chatelier H. Heat treatment of aluminium–copper alloys. Trans Am Soc Steel Treat. 1924;5:457–478.
  • Chihab K, Estrin Y, Kubin LP, et al. The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy. Scr Metall. 1987;21:203–208.10.1016/0036-9748(87)90435-2
  • Fernandez-Zelaia P, Adair BS, Barker VM, et al. The portevin-Le Chatelier effect in the Ni-based superalloy IN100. Metall Mater Trans A. 2015;46:5596–5609.10.1007/s11661-015-3126-7
  • Follansbee PS, Kocks UF. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 1988;36:81–93.10.1016/0001-6160(88)90030-2
  • Rule WK, Jones SE. A revised form for the Johnson–Cook strength model. Int J Impact Eng. 1998;21:609–624.10.1016/S0734-743X(97)00081-X
  • Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys. 1980;51:1498–1504.10.1063/1.327799
  • Jones AH, Maiden CJ, Green SJ, et al. Prediction of elastic-plastic wave profiles in aluminum 1060-0 under uniaxial strain loading. In: Proc. Mechanical Behavior of Materials under Dynamic Loads; New York; 1968.10.1007/978-3-642-87445-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.