304
Views
13
CrossRef citations to date
0
Altmetric
Original Research Paper

Deformation, diffusion and ductility during creep – continuous void nucleation and creep-fatigue damage

Pages 121-133 | Received 22 Apr 2016, Accepted 18 Oct 2016, Published online: 11 Nov 2016

References

  • Edmunds HG, White DJ. Observations on the effect of creep relaxation on high strain fatigue. J Mech Eng Sci. 1966;8:310–321.
  • Monkman FC, Grant NJ. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc Am Soc Test Mater. 1956;56:593–620.
  • Dobeš F, Milička K. The relation between minimum creep rate and time to fracture. Metal Sci. 1976;10:382–384.10.1080/03063453.1976.11683560
  • Phaniraj C, Choudhary BK, Bhanu Sankara Rao K, Raj B. Relationship between time to reach Monkman–Grant ductility and rupture life. Scr Mater. 2003;48:1313–1318.10.1016/S1359-6462(03)00021-6
  • Evans HE. Mechanisms of creep fracture. London: Elsevier Applied Science; 1984.
  • Pickering HB. Some aspects of creep deformation and fracture in steels. In: Strang A, editor. Rupture ductility of creep resistant steels. London: The Institute of Metals; 1991. p. 17–48.
  • Edward GH, Ashby MF. Intergranular fracture during power-law creep. Acta Metall. 1979;27:1505–1518.10.1016/0001-6160(79)90173-1
  • Cocks ACF, Ashby MF. On creep fracture by void growth. Prog Mater Sci. 1982;27:189–244.10.1016/0079-6425(82)90001-9
  • Blackburn LD. Isochronous stress strain curves for austenitic steels. In: Schaefer AO, editor. ASME winter annual conference. New York (NY): ASME; 1972. p. 15–48.
  • NIMS Structural Materials Data Sheets, Creep data Sheet No. 4B, 304 steel. Data sheets on the elevated temperature properties of 18Cr-8Ni stainless steel for boilers and heat exchanger stainless steel tubes (SUS 304HTB), NRIM, Japan 1986. Available from: http://mits.nims.go.jp/en
  • Hales R. The role of cavity growth mechanisms in determining creep-rupture under multiaxial stresses. Fatigue Fract Eng Mater Struct. 1994;17:579–591.10.1111/ffe.1994.17.issue-5
  • Dyson BF. Constraints on diffusional cavity growth rates. Metal Sci. 1976;10:349–353.10.1179/030634576790431417
  • Dyson BF. Constrained cavity growth, its use in quantifying recent creep fracture results. Canad Metall Quart. 1979;18:31–38.10.1179/cmq.1979.18.1.31
  • Kassner ME, Hayes TA. Creep cavitation in metals. Int J Plasticity. 2003;19:1715–1748.10.1016/S0749-6419(02)00111-0
  • Beere W, Speight MV. Creep cavitation by vacancy diffusion in plastically deforming solid. Metal Sci. 1978;12:172–176.10.1179/msc.1978.12.4.172
  • Hull D, Rimmer DE. The growth of grain boundary voids under stress. Phil Mag. 1959;4:673–687.10.1080/14786435908243264
  • Chen I-W, Argon AS. Diffusive growth of grain boundary cavities. Acta Metall. 1981;29:1759–1768.
  • Needleman A, Rice JR. Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall. 1980;28:1315–1332.10.1016/0001-6160(80)90001-2
  • Smith AF. The diffusion of chromium in type 316 stainless steel. Metal Sci. 1975;9:375–378.10.1179/030634575790444270
  • RCC-MR. Design and construction rules for mechanical components of FBR nuclear islands, section 1 – subsection Z: technical appendix A3. France: AFCEN; 2002.
  • Spindler MW. The multiaxial and uniaxial creep ductility of Type 304 steel as a function of stress and strain rate. Mater High Temps. 2004;21:47–54.10.1179/mht.2004.007
  • Spindler MW. The calculation of creep damage as a function of stress and strain rate. In: International Conference on High Temperature Plant Integrity and Life Extension ( British Energy Report E/REP/ATEC/0011/GEN/01, 2001); 2004 April 14–16; Cambridge University (UK): Robinson College.
  • Spindler MW. The prediction of creep damage in type 347 weld metal. Part I: the determination of material properties from creep and tensile tests. Int J Pressure Vessels Piping. 2005;82:175–184.10.1016/j.ijpvp.2004.09.003
  • Spindler MW. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests. Int J Pressure Vessels Piping. 2005;82:185–194.10.1016/j.ijpvp.2004.09.004
  • Skelton RP. Note on the effect of grain boundary cavitation on ductility. Phil Mag. 1967;15:405–409.10.1080/14786436708227711
  • Skelton RP. Diffusional creep strain due to void nucleation and growth. Metal Sci. 1975;9:192–194.10.1179/030634575790445099
  • Harris JE, Tucker MO, Greenwood GW. The diffusional creep strain due to the growth of intergranular voids. Metal Sci. 1974;8:311–314.10.1179/msc.1974.8.1.311
  • Miller DA, Mohamed FA, Langdon TG. An analysis of cavitation failure incorporating cavity nucleation with strain. Mater Sci Eng. 1979;40:159–166.10.1016/0025-5416(79)90185-X
  • Majumdar S. Relationship of creep, creep-fatigue, and cavitation in type 304 austenitic stainless steel. Trans ASME J Eng Technol. 1989;111:121–131.
  • Chen I-W, Argon AS. Creep cavitation in 304 stainless steel. Acta Metall. 1981;29:1321–1333.10.1016/0001-6160(81)90023-7
  • Dyson BF. Continuous cavity nucleation and creep fracture. Scripta Metall. 1983;17:31–37.10.1016/0036-9748(83)90065-0
  • Dyson BF, Mclean D. Creep of Nimonic 80A in torsion and tension. Metal Sci. 1977;11:37–45.10.1179/msc.1977.11.2.37
  • Needham NG, Gladman T. Nucleation and growth of creep cavities in a Type 347 steel. Metal Sci. 1980;14:64–72.10.1179/030634580790426300
  • Cane BJ. Interrelationship between creep deformation and creep rupture in 2¼Cr-1Mo steel. Metal Sci. 1979;13:287–294.10.1179/03063453.1979.11674139
  • Cane BJ, Greenwood GW. The nucleation and growth of cavities in iron during deformation at elevated temperatures. Metal Sci. 1975;9:55–60.10.1179/030634575790444405
  • Cane BJ. Deformation-induced intergranular creep cavitation in alpha-iron. Metal Sci. 1978;12:102–108.10.1179/msc.1978.12.2.102
  • Ratcliffe RT, Greenwood GW. The mechanism of cavitation in magnesium during creep. Phil Mag. 1965;12:59–69.10.1080/14786436508224947
  • Needham NG, Cane BJ. Creep strain and rupture predictions by cavitational assessment in 2¼Cr1Mo steel weldments. In: Woodford DA, Whitehead JR, editors. Advances in life prediction methods; New York (NY): ASME; 1983. p. 65–73.
  • Needham NG, Gladman T. Intergranular creep cavitation in 2¼Cr-1Mo steels. In: Advances in the physical metallurgy and applications of steel, Book 284. London: The Metals Society; 1982. p. 309–317.
  • Needham NG, Gladman T. The effect of stress-state on the processes controlling creep fracture in low alloy ferritic steels. In: Wilshire B, Owen DJ, editors. Creep and fracture of engineering materials and structures. Swansea: Pineridge Press; 1984. p. 1263–1276.
  • Chen B, Flewitt PEJ, Smith DJ. Application of focussed ion beam milling and imaging for studying creep cavitation. The FESI Bulletin. 2011;5:16–20.
  • Hales R. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance. Fatigue Eng Mater Struct. 1983;6:121–135.10.1111/ffe.1983.6.issue-2
  • Wood DS, Wynn J, Austin C, Green JG. A ductility exhaustion evaluation of some long term creep/fatigue tests on austenitic steel. Fatigue Fract Eng Mater Struct. 1988;11:371–381.10.1111/ffe.1988.11.issue-5
  • Dean DW, editor. Assessment procedure for the high temperature response of structures. Issue 3, Revision 002. Barnwood (UK): EDF Nuclear Generation Ltd; 2014.
  • Feltham P. Stress relaxation in copper and alpha brasses at low temperatures. J Inst Metals. 1960;89:210–214.
  • Spindler MW. An improved method to calculate the creep-fatigue endurance of type 316H stainless steel. In: Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ, editors. Materials for advanced power engineering 2006. Proceedings of the 8th Liege Conference. Part III. Forschungszentrum Jülich GmbH; 2006. p. 1673–1682. ISBN 3-89336-436-6.
  • Spindler MW. Effects of dwell location on the creep-fatigue endurance of cast Type 304L. Mater High Temps. 2008;25:187–196.10.3184/096034008X357320
  • Spindler MW, Knowles G, Jacques S, Austin C. Creep fatigue behaviour of type 321 stainless steel at 650°C. Mater High Temps. 2014;31:284–304.10.1179/0960340914Z.00000000051
  • Wareing J, Bretherton I, Livesey VB. Life prediction for elevated temperature components subjected to cyclic deformation. In: Conference on Fatigue of Engineering Materials and Structures, Paper C269/86. London: Institution of Mechanical Engineers; 1986. p. 147–163.
  • Spindler MW. An improved method for calculation of creep damage during creep–fatigue cycling. Mater Sci Technol. 2007;23:1461–1470.10.1179/174328407X243924
  • Spindler MW, Payten WM. Advanced ductility exhaustion methods for the calculation of creep damage during creep-fatigue cycling. J ASTM Internat. 2000;8(7). doi:10.1520/JAI103806. (Also available as ASTM STP1539. West Conshohocken, PA: ASTM; 2011. p. 102–127.)
  • Sundararajan G. Continuous cavity nucleation and creep ductility. Scripta Metall. 1985;19:1141–1146.10.1016/0036-9748(85)90224-8
  • Sundararajan G. The Monkman-Grant relationship. Mater Sci Eng A. 1989;112:205–214.10.1016/0921-5093(89)90360-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.