Publication Cover
Energy Materials
Materials Science and Engineering for Energy Systems
Volume 12, 2017 - Issue 1: Themed Issue on High Temperature Deformation
1,845
Views
0
CrossRef citations to date
0
Altmetric
Review

Damage modelling: the current state and the latest progress on the development of creep damage constitutive equations for high Cr steels

ORCID Icon, ORCID Icon &
Pages 229-237 | Received 11 Aug 2016, Accepted 12 Jan 2017, Published online: 15 Feb 2017

References

  • Ennis PJ, Ennis A, Zielinska-lipiec AO, et al. Czyrska-filemonowicz Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 1997;45(12):4901–4907.10.1016/S1359-6454(97)00176-6
  • Lee JS, Armakia HG, Maruyamab K, et al. Causes of breakdown of creep strength in 9Cr–1.8 W–0.5Mo–VNb steel. Mater Sci Eng A. 2006;428:270–275.10.1016/j.msea.2006.05.010
  • Ennis PJ, Ennis A, Zielinska-lipiec AO, et al. Czyrska-filemonowicz Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant. Acta Mater. 1997;45(12):4901–4907.10.1016/S1359-6454(97)00176-6
  • Grades EA. Development of a creep-damage model for non-isothermal long-term strength analysis of high-temperature components operating in a wide stress range; 2008 Jul; Zentrum f¨ur Ingenieurwissenschaften der Martin-Luther-Universit¨at Halle-Wittenberg (the document was downloaded from internet); 2008.
  • Parker J. In-service behavior of creep strength enhanced ferritic steels Grade 91 and Grade 92 – Part 1 parent metal. Int J Pres Ves Piping. 2013;101:30–36.10.1016/j.ijpvp.2012.10.001
  • Miannay D. Time-dependent fracture mechanics. France: Springer; 2001.10.1007/978-1-4613-0155-4
  • An L, Xu Q, Lu Z, et al. Analyzing the characteristics of the cavity nucleation, growth and coalescence mechanism of 9Cr-1Mo-VNb steel (P91)”. 3rd International Conference of Machinery, Materials Science and Engineering; 2013 Jun 22–23; Wuhan, China.
  • An L, Xu Q, Lu Z, et al. Review of creep deformation and rupture mechanism of P91 alloy for the development of creep damage constitutive equations under low stress level accepted by the 10th International conference of scientific computing; July 22–25; Las Vegas, Nevada: UAS.
  • Kimura K, Kushima H, Sawada K. Long-term creep deformation property of modified 9Cr–1Mo steel. Mater Sci Eng A. 2009;510–511:58–63.10.1016/j.msea.2008.04.095
  • Sawada K, Kushima H, Tabuchi M, et al. Microstructural degradation of Gr.91 steel during creep under low stress. Mater Sci Eng A. 2011;528:5511–5518.10.1016/j.msea.2011.03.073
  • Panait CG, Bendick W, Fuchsmann A, et al. Study of the microstructure of the Grade91 steel after more than100,000 h of creep exposure at 600 °C. Int J Press Vessels Pip. 2010;87:326–335.10.1016/j.ijpvp.2010.03.017
  • Magnusson H. Creep modelling of particle strengthened steels [PhD thesis]. Sweden: Department of Materials Science and Engineering, Royal Institute of Technology; 2010
  • Parker J. In-service behavior of creep strength enhanced ferritic steels grade 91 and grade 92 – Part 2 Weld Issues. International Journal of Pressure Vessels and Piping. February–March 2014;114–115:76–87.
  • Auerkari P, Salonen J, Holmström S, et al. Creep damage and long term life modelling of an X20 steam line component. Eng Fail Anal. 2013;35:508–515.10.1016/j.engfailanal.2013.05.008
  • Li Y, Hongo H, Hongo H., et al. Evaluation of creep damage in heat affected zone of thick welded joint for Mod.9Cr-1Mo Steel2. Int J Pres Ves Piping. 2009;86:585–592. 10.1016/j.ijpvp.2009.04.008
  • Xu Q, Wang X. Critical review the development of creep damage constitutive equations for high Cr steels. Submitted to SMiRT22; 2013 Aug 18–23; San Francisco, California: USA; 2013.
  • Dyson B. Use of CDM in materials modelling and component creep life prediction. Int J Pres Ves Piping. 1983;122:281–296.
  • Wu R, Sandstrom R. Creep cavity nucleation and growth in 12Cr-Mo-V steel. Mater Sci Techn. 1995;11:579–588.10.1179/mst.1995.11.6.579
  • Aghajani A, Somsen Ch, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 2009;57:5093–5106.10.1016/j.actamat.2009.07.010
  • Yin Y, Faulkner RG, Morris PF, et al. Modelling and experimental studies of alternative heat treatments in Steel 92 to optimise long term stress rupture properties. Energy Mater. 2008;3:232–242.10.1179/174892409X12596773881522
  • Gaffard V, Besson J, Gourgues-Lorenzon AF. Creep failure model of a tempered martensitic stainless steel integrating multiple deformation and damage mechanisms. Int J Fracture. 2005;133:139–166.10.1007/s10704-005-2528-8
  • Chu CC, Needleman A. Voids nucleation effects in biaxially stretched sheets. J. Eng Mater Technol. 1980;102:249–256.10.1115/1.3224807
  • Herding U, Kuhn G. A field boundary element formulation of damage mechanics. Eng Anal Boundary Elem. 1996;18: 137–147.10.1016/S0955-7997(96)00044-6
  • DZieciol KP. Four dimensional characterization of creep cavity growth in copper [PhD thesis]. Fakultät für Maschinenbau der Ruh-Universitat Bochum; 2010
  • Sketa F, Dzieciolb K, Borbélyb A, et al. Microtomographic investigation of damage in E911 steel after long term creep. Mater Sci Eng A. 2010;528:1023–1111.
  • Yang X, Xu Q, Lu Z., The development and validation of the creep damage constitutive equations for P91 Alloy. Proceedings of the 2013 World Congress in Computer Science and Computer Engineering and Application; 2015 Sep 11–12; Glasgow, Scotland: CSREA Press. p. 121–127. ISBN 1-60132-238-0.
  • Chen YS, Yan W, Hu P, et al. CDM model for P91 under high stress level. Acta Metall Sinica. 2011;47(11):1372–1377.
  • Basirat M, Shrestha T, Potirniche GP, et al. A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling. Int Journal Plast. 2012;37:95–107.10.1016/j.ijplas.2012.04.004
  • Semba H, Dyson B, McLean M. Microstructural-based creep modeling of 9%Cr martensitic steel. Mater High Temp. 2008;25(3):131–137
  • Oruganti R, Karadge M, Swaminathan S. Damage mechanics-based creep model for 9-10%Cr ferritic steel. Acta Materi. 2011;59:2145–2155.10.1016/j.actamat.2010.12.015
  • Perrin J, Hayhurst DR. Creep constitutive equations for 0.5Cr0.5Mo0.25 V ferritic steel in the temperature range 600–675 °C. J Strain Anal. 1996;31:299–31410.1243/03093247V314299
  • Hyde TH, Becker AA, Sun W, et al. Finite-element creep damage analysis of P91 pipes. Int J Pres Ves Piping. 2006;83(11–12):853–863.
  • Petry C, Lindet G. Modelling creep behavior and facture of 9Cr-0.5Mo-1.8 W-VNb steel. Int J Pres Ves piping.2009;86:486–494. 10.1016/j.ijpvp.2009.03.006
  • Hayhurst DR. Creep rupture under multi-axial states of stress. J Mech Phys Solids. 1972;20:381–382.10.1016/0022-5096(72)90015-4
  • Naumenko K, Koystenko Y. Structural analysis of a power plant component using a stress-range-dependent creep-damage constitutive model. Mater Sci Eng A. 15 June 2009;510–511:169–174.
  • Naumenko K, Kutschke A, Kostenko Y, et al. Multi-axial thermo-mechanical analysis of power plant components from 9–12% Cr steels at high temperature. Eng Fract Mech. 2011;78:1657–1668.10.1016/j.engfracmech.2010.12.002
  • Ogata T, Sakai T, Yaguchi M. Damage assessment method of P91 steel welded tube under internal pressure creep based on void growth simulation. Int J Press Vessels Pip. 2010;87:611–616.10.1016/j.ijpvp.2010.08.009
  • Xu Q. The development of validation methodology of multi-axial creep damage constitutive equations and its application to 0.5Cr0.5Mo0.25 V ferritic steel at 590 °C. Nucl Eng Des. 2004;228(1–3):97–10610.1016/j.nucengdes.2003.06.021
  • Xu Q, Wang X, Critical review the development of creep damage constitutive equations for high Cr steels. 9th International Seminar on High Temperature Materials; 2013 May 23–24; London; 2013.
  • Xu Q, Lu Z. The design of phenomenological law for minimum creep rate and stress for high Cr alloy, International Conference on Experience with the Manufacture, Welding, Quality Control and Use of T/P91-92, T/P23-24 Steels; 2016 Apr 20–22; Wuhan, China organized by European Technology Development, UK; 2016.