1,144
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Procedures for handling computationally heavy cyclic load cases with application to a disc alloy material

&
Pages 447-458 | Received 11 Apr 2018, Accepted 03 Jun 2019, Published online: 20 Jun 2019

References

  • Nesnas K, Saanouni K. A cycle jumping scheme for numerical integration of coupled damage and viscoplastic models for cyclic loading paths. Revue Européenne Des Éléments Finis. 2000;9:865–891.
  • Cojocaru D, Karlsson AM. A simple numerical method of cycle jumps for cyclically loaded structures. Int J Fatigue. 2006;28:1677–1689.
  • Bogard F, Lestriez P, Guo YQ. Damage and rupture simulation for mechanical parts under cyclic loadings. J Eng Mater Technol. 2010;132:021003.
  • Brommesson R, Ekh M. Modelling of cyclic behaviour of haynes 282 at elevated temperatures. Mater High Temp. 2014;31:121–130.
  • Diel S, Huber O. A continuum damage mechanics model for the static and cyclic fatigue of cellular composites. Materials. 2017;10:951–972.
  • Kindrachuk VM, Unger JF. A fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration. Int J Fatigue. 2017;100:215–228.
  • Zhang Y, Lu L, Gong Y, Zhang JZeng D. Finite element modeling and experimental validation of fretting wear scars in a press-fitted shaft with an open. Zone,tribology Transactions. 2018;61:585-595. DOI: 10.1080/10402004.2017.1378395
  • Shojaei AK, Wedgewood AR. An anisotropic cyclic plasticity, creep and fatigue predictive tool for unfilled polymers. Mech Mater. 2017;106:20–34.
  • Rezazadeh M, Carvelli V. A damage model for high-cycle fatigue behavior of bond between frp bar and concrete. Int J Fatigue. 2018;111:101–111.
  • Lin J, Dunne FPE, Hayhurst DR. Approximate method for the analysis of components undergoing ratchetting and failure. J Strain Anal. 1998;33:55–64.
  • Johansson G, Ekh M. On the modeling of large ratcheting strains with large time increment. Int J Comput-Aided Eng Soft. 2007;24:221–236.
  • Bogard F, Lestriez P, Guo YQ. Numerical modeling of fatigue damage and fissure propagation under cyclic loadings. Int J Damage Mech. 2008;17:173–187.
  • Burlon S, Mroueh H, Cao JP. ‘skipped cycles’ method for studying cyclic loading and soil-structure interface. Comput Geotech. 2014;61:209–220.
  • Wang P, Cui L, Lyschik M, et al. A local extrapolation based calculation reduction method for the application of constitutive material models for creep fatigue assessment. Int J Fatigue. 2012;44:253–259.
  • Kontermann C, Scholz A, Oechsner M. A method to reduce calculation time for fe simulations using constitutive material models. Mater High Temp. 2014;31:334–342.
  • Abaqus, abaqus 6.12 documentation, dassault systèmes, providence, usa; 2014.
  • Brommesson R, Ekh M, Hörnqvist M. Correlation between crack length and load drop for low-cycle fatigue crack growth in ti-6242. Int J Fatigue. 2015;81:1–9.
  • Hasselqvist M Aspects of creep-fatigue in gas turbine hot parts [dissertation]. Linköping University; 2001.
  • Hyde CJ, Sun W, Hyde TH, et al. Thermo-mechanical fatigue testing and simulation using a viscoplasticity model for a p91 steel. Comput Mater Sci. 2012;56:29–33.
  • Moverare JJ, Kontis P, Johansson S, et al. Thermomechanical fatigue crack growth in a cast polycrystalline superalloy. MATEC Web of Conferences. 2014;14:19004.
  • Maier G, Hübsch O, Somsen C, et al. Cyclic plasticity and lifetime of the nickel-based alloy c-263: experiments, models and component simulation. MATEC Web of Conferences. 2014;14:16006.
  • Pang HT, Reed PAS. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy udimet 720li. Mater Sci Eng A. 2007;448:67–79.
  • Zhu SP, Huang HZ, He LP, et al. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys. Eng Fract Mech. 2012;90:89–100.
  • Sudarshan Rao G, Sharma VMJ, Thomas Tharian K, et al. Study of lcf behavior of in718 superalloy at room temperature. Mater Sci Forum. 2012;710:445–450.
  • Musinski WD, McDowell DL. Microstructure-sensitive probabilistic modeling of hcf crack initiation and early crack growth in ni-base superalloy in100 notched components. Int J Fatigue. 2012;37:41–53.
  • Dong K, Yuan C, Gao S, et al. Creep properties of a powder metallurgy disk superalloy at 700°c. J Mater Res. 2017;32:624–633.
  • Ahmed R, Barrett PR, Hassan T. Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress-strain responses of haynes 230. Int J Solids Struct. 2016;88–89:131–145.
  • Saxena A. Creep and creep-fatigue crack growth. Int J Fract. 2015;191:31–51.
  • Lundström E, Simonsson K, Gustafsson D, et al. A load history dependent model for fatigue crack propagation in inconel 718 under hold time conditions. Eng Fract Mech. 2014;118:17–30.
  • Wilcock IM, Cole DG, Brooks JW, et al. Elevated temperature cyclic stress-strain behaviour in nickel based superalloys. Mater High Temp. 2002;19:187–192.
  • Yu H, Li Y, Huang X, et al. Low cycle fatigue behavior and life evaluation of a p/m nickel base superalloy under different dwell conditions. Procedia Eng. 2010;2:2103–2110.
  • Gustafsson D, Moverare JJ, Simonsson K, et al. Modeling of the constitutive behavior of inconel 718 at itermediate temperatures. J Eng Gas Turbine Power. 2011;133:094501.
  • Prasad K, Sarkar R, Ghosal P, et al. High temperature low cycle fatigue deformation behaviour of forged in 718 superalloy turbine disc. Mater Sci Eng A. 2013;568:239–245.
  • Cruzado A, Llorca J, Segurado J. Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and computational homogenization. Int J Solids Struct. 2017;122–123:148–161.
  • Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery, part i: formulation and basic features for ratchetting behavior. Int J Plast. 1993;9:375–390.
  • Ohno N, Wang JD. Kinematic hardening rules with critical state of dynamic recovery, part ii: application to experiments of ratchetting behavior. Int J Plast. 1993;9:391–403.
  • Chaboche JL. A review of some plasticity and viscoplasticity constitutive theories. Int J Plast. 2008;24:1642–1693.
  • Chaboche JL. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast. 1989;5:247–302.
  • Matlab r2015a. The mathworks Inc., Natick; 2018.
  • Hallquist JO. Ls-dyna theory manual. Livermore: Livermore Software Technology Corporation; 2006.
  • Ince G, Glinka G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings. Int J Fatigue. 2014;62:34–41.
  • Leidermark D, Eriksson R, Rouse JP, et al. Thermomechanical fatigue crack initiation in disc alloys using a damage approach. MATEC Web Conf, 12th International Fatigue Congress. 2018;165:19007.
  • Cruzado A, Lucarini S, Llorca J, et al. Microstructure-based fatigue life model of metallic alloys with bilinear coffin-manson behavior. Int J Fatigue. 2018;107:40–48.