240
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructural degradation in the subsurface layer of the nickel base alloy 718 upon high-temperature oxidation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 147-157 | Received 04 May 2020, Accepted 19 Feb 2021, Published online: 01 Mar 2021

References

  • Cruchley S, Evans H, Taylor M. An overview of the oxidation of Ni-based superalloys for turbine disc applications. Mater High Temp. 2016;33(4–5):465–475.
  • Maier HJ, Niendorf T, Bürgel R. Handbuch Hochtemperatur-Werkstofftechnik. Wiesbaden: Springer Fachmedien Wiesbaden; 2015.
  • Wallwork GR. The oxidation of alloys. Rep Prog Phys. 1976;39(39):401–485.
  • Kumar A, Chernatynskiy A, Hong M, et al. An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni3Al. Comput Mater Sci. 2015;101:39–46.
  • Reed RC. ‘The superalloys’. Cambridge: Cambridge Univ. Press; 2008.
  • Schafrik RE, Ward DD, Groh JR Application of Alloy 718 in GE Aircraft Engines. In: Superalloys 718, 625, 706 and Various Derivatives (2001). TMS; 2001. p. 1–11.
  • Renhof L. Mikrostruktur und mechanische Eigenschaften der Nickellegierung IN 718 [dissertation]. Technische Universität München, München; 15.10.2007.
  • Slama C, Abdellaoui: M. Structural characterization of the aged Inconel 718. J Alloys Compd. 2000;306(1–2):277–284.
  • Greene GA, Finrock CC: ‘Oxidation of Inconel 718 in air at temperatures from 973K to 1620K’; 2000.
  • Al-hatab KA, Al-bukhaiti MA, Krupp U, et al. Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxid Met. 2011;75(3–4):209–228.
  • Sanviemvongsak T, Monceau D, Macquaire B. High temperature oxidation of IN 718 manufactured by laser beam melting and electron beam melting. Corros Sci. 2018;141:127–145.
  • Sanviemvongsak T, Monceau D, Desgranges C, et al. Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing. Corros Sci. 2020;170:108684.
  • Delaunay F, Berthier C, Lenglet M, et al. SEM-EDS and XPS studies of the high temperature oxidation behaviour of inconel 718. Mikrochim Acta. 2000;132(2–4):337–343.
  • Garat V, Deleume J, Cloue J-M, et al. High temperature intergranular oxidation of alloy 718. In: Superalloys 718, 625, 706 and various derivatives (2005). TMS; 2005. p. 559–569.
  • Jia Q, Gu D. Selective laser melting additive manufactured Inconel 718 superalloy parts. Opt Laser Technol. 2014;62:161–171.
  • Trindade VB, Krupp U, Wagenhuber PE-G, et al. Studying the role of the alloy-grain-boundary character during oxidation of Ni-base alloys by means of the electron back-scattered diffraction technique. Mater High Temp. 2014;22(3–4):207–212.
  • Seehra MS, Suresh Babu V. Low temperature magnetic transition and high temperature oxidation in INCONEL alloy 718ʹ. J Mater Res. 1996;11(5):1133–1136.
  • Li L, et al. Influence of building direction on the oxidation behavior of inconel 718 alloy fabricated by additive manufacture of electron beam melting. Materials (Basel). 2018;11:12.
  • Nash P. The Cr− Ni (Chromium-Nickel) system. Bulletin Alloy Phase Diagrams. 1986;7(5):466–476.
  • Nash P, Nash: A. The Nb−Ni (Niobium-Nickel) system. Bulletin Alloy Phase Diagrams. 1986;7(2):124–130.
  • Heddle TA. On the temperature sensitivity of special magnetic materials. Br J Appl Phys. 1953;4(6):161–166.
  • Volk KE. Nickel und Nickellegierungen. Berlin, Heidelberg: Springer Berlin Heidelberg; 1970.
  • Smith TF, Kaiser AB, White: GK. Temperature dependence of magnetovolume for Ni-Cr alloys near the critical composition for magnetism. Int J Thermophys. 1991;12(4):627–635.
  • Buis N, Franse JJM, Brommer: PE. The magnetic properties of Ni3Al under high pressures. Physica B+C. 1981;106(1):1–8.
  • De Boer FR, Schinkel CJ, Biesterbos J, et al. Exchange‐enhanced paramagnetism and weak ferromagnetism in the Ni 3 Al and Ni 3 Ga phases; giant moment inducement in Fe‐doped Ni 3 Ga. J Appl Phys. 1969;40(3):1049–1055.
  • Takahashi S, Sato Y, Kamada Y, et al. Study of chromium depletion by magnetic method in Ni-based alloys. J Magn Magn Mater. 2004;269(2):139–149.
  • Kikuchi H, Takahashi H, Yanagiwara H, et al. ‘Relationship between ferromagnetic properties and grain size of Inconel alloy 600ʹ. J Magn Magn Mater. 2015;381:56–64.
  • Kikuchi H, Yanagiwara H, Takahashi H, et al.: ‘Detection of sensitization for 600 alloy and austenitic stainless steel by magnetic field sensor.’, in ‘19th WCNDT 2016 in Munich, Germany’, 158-USB, ‘DGZfP-Proceedings BB’, 2016, München.
  • Dibelius G, Krichel HJ, Reimann U. Zerstörungsfreie Messung der Korrosionseinwirkung auf Hochtemperaturschutzschichten. In: Kraftwerkstechnik VGB, editor. Abschlussbericht des VGB-Forschungsprojektes Nr. 54. Vol. 70, 9; 1990. p. 762–768.
  • Schnell A, Antonelli G, Germerdonk K. Non-destructive testing method of determining the depletion of a coating. US Patent 7,175,720 B2. 2003 Dec 04.
  • Burkhardt GL, Kwun H. Nonlinear harmonics method and system for measuring degradation in protective coatings. US Patent 6,201,391. 1998 Oct 07.
  • Beck T, Reiche R, Wilkenhoner R. Method for carrying out nondestructive testing of alloys which contain carbides or which are sulfided near the surface, and for producing a gas turbine blade. Patent Application Publication US 2004/0045162 A1. 2003 Sep 12.
  • Gerstner R, Landensperger R, Peichl L. Gas turbine inspection method for inspecting components in a gas turbine uses a computer-controlled manipulator to move a magnetoscope probe along an inspected component’s. surface’, German Patent DE102004030501A1. 2004 Jun 24.
  • Ngo KD, Fairbourn DC, Nguyen-Dinh X. Process for repairing sulfidation damaged turbine components. US Patent 7,146,990 B1. 2005 Jun 26.
  • VDM Metals. Werkstoffdatenblatt Nr. 4127; 2016. https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Datenblatt_VDM_Alloy_718.pdf.
  • Mercier D, Lesage J, Decoopman X, et al. Eddy currents and hardness testing for evaluation of steel decarburizing. NDT E Int. 2006;39(8):652–660.
  • Stegemann D, Reimche W, Feiste KL, et al. Determination of mechanical properties of steel sheet by electromagnetic techniques. In: Green RE, editor. Nondestructive characterization of materials VIII. Boston, MA, s.l: Springer US; 1998. p. 269–275.
  • Maaß M, Nehring J. Oberwellenanalyse bei der magnet-induktiven Wirbelstromprüfung in der Praxis.
  • Bruchwald O, Frackowiak W, Bucquet T, et al. In-situ monitoring of the material transformation in forged components. HTM. 2015;70(3):150–161.
  • Bruchwald O, Frąckowiak W, Reimche W, et al. Sensor-controlled bainitic transformation and microstructure formation of forgings during the cooling process. Mat.-wiss. u. Werkstofftech. 2016;47(8):780–788.
  • Bruchwald O. In-situ-Erfassung der Werkstoffumwandlung und Gefügeausbildung mittels Wirbelstromtechnik [dissertation] Leibniz Universität Hannover; TEWISS - Technik und Wissen GmbH; 2017.
  • Garcia-Fresnillo L, Chyrkin A, Böhme C, et al. Oxidation behaviour and microstructural stability of alloy 625 during long-term exposure in steam. J Mater Sci. 2014;49(17):6127–6142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.