262
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Serrated yielding in austenitic stainless steels

ORCID Icon
Pages 222-236 | Received 18 Dec 2020, Accepted 11 Apr 2021, Published online: 03 May 2021

References

  • Portevin A, LeChatelier F. Heat treament of aluminum-coopper alloys. Trans Am Soc Steel Treat. 1924;530:457–478.
  • Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65(4–6):39–104.
  • Monteiro SN, Pereira AC, Braga FDO, et al., Relevance of Dynamic Strain Aging under Quasi-Static Tension on AISI 304 Stainless Steel, Materials Research (2017) 421–425.
  • Alomari AS, Kumar N, Murty KL, Enhanced ductility in dynamic strain aging regime in a Fe-25Ni-20Cr austenitic stainless steel, Materials Science and Engineering. (2018) 157–160.
  • Brechtl J, Chen S, Lee C, et al. A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys. Metals. 2020;10(8):1101.
  • Rodriguez P. Dynamic Strain Ageing: is it really a damage mechanism? In: Raj B, Rao KBS, Jayakumar T, et al., editors. Proceeding of International Symposium on Materials Ageing and Life Management. Kalpakkam, India: Allied Publishers Limited; 2000. p. K1–K14.
  • Shipley WTBARJ. ASM Handbook Volume 11: failure Analysis and Prevention. ASM International; 2002.
  • Murty KL, Charit I. Structural materials for Gen-IV nuclear reactors: challenges and opportunities. J Nucl Mater. 2008;383(1–2):189–195.
  • Marshall P. Austenitic Stainless Steels: microstructure and mechanical properties. Elsevier Applied Science; 1984.
  • Maziasz PJ, Busby JT. Properties of Austenitic Steels for Nuclear Reactor Applications. In: Konings RJM, editor. Comprehensive Nuclear Materials. Oxford: Elsevier; 2012. p. 267–283.
  • Sourmail T. Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol. 2001;17(1):1–14.
  • Zhang JS, Li PE, Jin JZ. Combined matrix/boundary precipitation strengthening in creep of Fe-15 Cr-25 Ni alloys. Acta Metallurgica et Materialia. 1991;39(12):3063–3070.
  • Mayer KH, Masuyama F. The development of creep-resistant steels. In: Abe F, Kern T-U, Viswanathan R, editors. Creep-Resistant Steels. Cambridge, England: Woodhead Publishing; 2008. p. 15–77.
  • Beckitt FR, Banks TM, Gladman T, Secondary creep deformation in 18%Cr-10%Ni steel, Creep strength in steel and high temperature alloys, The Metal Society, London, 1972, pp. 71–77.
  • Mathew MD. Evolution of creep resistant 316 stainless steel for sodium cooled fast reactor applications. Trans Indian Inst Met. 2010;63(2–3):151–158.
  • Simmons JW. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng A. 1996;207(2):159–169.
  • Alden G, Aronsson B, Some observations on the influence of carbon and nitrogen on the creep befavior of AISI 316 type austentic stainless steels, Creep strength in steel and high temperature alloys, The Metal Society, London, 1972, pp. 67–70.
  • Mathew MD, Ganesan V, Kumar JG, et al. Creep properties and design curves fornitrogen enhanced grade of 316LN stainlesssteel. Mater High Temp. 2015;32(4):363–368.
  • Admason JM, Martin JW, Effect of niobium content on the steady state creep of stabilized 20%Cr-25%Ni austenitic stainless steels, Creep strength in steel and high temperature alloys, The Metal Society, London, 1972, pp. 99–105.
  • Latha S, Mathew MD, Parameswaran P, et al. Effect of titanium on the creep deformation behaviour of 14Cr–15Ni–Ti stainless steel. J Nucl Mater. 2011;409(3):214–220.
  • Vodárek V. Creep behaviour and microstructural evolution in AISI 316LN+Nb steels at 650°C. Mater Sci Eng A. 2011;528(12):4232–4238.
  • McGuire MF. Austenitic Stainless Steels, Stainless Steels for Design Engineers. Materials Park, OH: ASM International; 2008.
  • Nandedkar RV, Kesternich W, Effect of boron on high-temperature creep behavior of austenitic stainless steel DIN 1.4970, Metallurgical Transactions A 21 (12) (1990) 3033–3038.
  • Shingledecker JP, Maziasz PJ, Evans ND, et al. Creep behavior of a new cast austenitic alloy. Int J Press Vessels Pip. 2007;84(1–2):21–28.
  • Zhou Y, Li Y, Liu Y, et al. Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging. J Mater Res. 2015;30(23):3642–3652.
  • Padilha AF, Rios PR. Decomposition of Austenite in Austenitic Stainless Steels. ISIJ Inter. 2002;42(4):325–327.
  • Peng B, Zhang H, Hong J, et al. The evolution of precipitates of 22Cr–25Ni–Mo–Nb–N heat-resistant austenitic steel in long-term creep. Mater Sci Eng A. 2010;527(16–17):4424–4430.
  • Evans ND, Maziasz PJ, Shingledecker JP, et al. Structure and Composition of Nanometer-Sized Nitrides in a Creep-Resistant Cast Austenitic Alloy. Metall Mater Trans A. 2010;41(12):3032–3041.
  • Sourmail T, Bhadeshia HKDH, Microstructural evolution in two variants of NF709 at 1023 and 1073 K, Metallurgical and Materials Transactions: (2005) 23–34.
  • Rodriguez P. Serrated plastic flow. Bull Mater Sci. 1984;6(4):653–663.
  • Orowan E. Problems of plastic gliding. Proc Phys Soc. 1940;52(1):8–22.
  • Mannan SL, Rodriguez P. Strain-ageing in disordered CuAu. Philos Mag. 1972;25(3):673–686.
  • Mohamed FA, Murty KL, Langdon TG. The portevin-le chatelier effect in Cu3Au. Acta Metall. 1974;22(3):325–332.
  • Yuan L, Hu R, Li J, et al., Portevin-Le Chatelier effect in a Ni–Cr–Mo alloy containing ordered phase with Pt2Mo-type structure at room temperature, Materials Science and Engineering: (2016) 317–322.
  • Bolling GF, Richman RH. Continual mechanical twinning: part I: formal description. Acta Metall. 1965;13(7):709–722.
  • Koyama M, Sawaguchi T, Tsuzaki K. Deformation Twinning Behavior of Twinning-induced Plasticity Steels with Different Carbon Concentrations – part 2: proposal of Dynamic-strain-aging-assisted Deformation Twinning. ISIJ Inter. 2015;55(8):1754–1761.
  • Seetharaman V. Deformation and martensitic transformation. Bull Mater Sci. 1984;6(4):703–716.
  • Ramachandran V, Baldwin DH, Reed-Hill RE. Tensile behavior of polycrystalline zirconium at 4.2°K. Metall Trans. 1970;1(11):3011.
  • Kubin LP, Spiesser P, Estrin Y. Computer simulation of the low temperature instability of plastic flow. Acta Metall. 1982;30(2):385–394.
  • Rodriguez P, Venkadesan S. Serrated Plastic Flow Revisited. Solid State Phenom. 1995;42–43:257–266.
  • Murty KL, Charit I. Static strain aging and dislocation–impurity interactions in irradiated mild steel. J Nucl Mater. 2008;382(2–3):217–222.
  • Pink E, Grinberg A. Serrated flow in a ferritic stainless steel. Mater Sci Eng. 1981;51(1):1–8.
  • Robinson JM, Shaw MP. Microstructural and mechanical influences on dynamic strain aging phenomena. Int Mater Rev. 1994;39(3):113–122.
  • Cottrell AH, Bilby BA. Dislocation Theory of Yielding and Strain Ageing of Iron. Proc Phys Soc Sec A. 1949;62(1):49.
  • Cottrell AH. LXXXVI. A note on the Portevin-Le Chatelier effect. London, Edinburgh, Dublin Philos Mag J Sci. 1953;44(355):829–832.
  • Cottrell AH. Dislocations and Plastic Flow in Crystals. Am J Phys. 1954;22(4):242–243.
  • Ham RK, Jaffrey D. Dislocation multiplication, vacancy accumulation, and the onset of jerky flow during forward and reverse 1 strain in Cu-3.2 at. % Sn, The Philosophical Magazine. J Theor Exp Appl Phys. 1967;15(134):247–256.
  • Murty KL, Detemple K, Kanert O, et al. In-situ nuclear magnetic resonance investigation of strain, temperature, and strain-rate variations of deformation-induced vacancy concentration in aluminum. Metall Mater Trans A. 1998;29(1):153–159.
  • McCormigk PG. A model for the Portevin-Le Chatelier effect in substitutional alloys. Acta Metall. 1972;20(3):351–354.
  • Beukel AVD. On the mechanism of serrated yielding and dynamic strain ageing. Acta Metall. 1980;28(7):965–969.
  • Van Den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A Physica Status Solidi A. 1975;30(1):197–206.
  • Kubin LP, Estrin Y. Dynamic strain ageing and the mechanical response of alloys. J Phys. 1991;1(6):929–943.
  • Fu S, Cheng T, Zhang Q, et al. Two mechanisms for the normal and inverse behaviors of the critical strain for the Portevin–Le Chatelier effect. Acta Materialia. 2012;60(19):6650–6656.
  • Sarmah R, Ananthakrishna G. Correlation between band propagation property and the nature of serrations in the Portevin–Le Chatelier effect. Acta Materialia. 2015;91:192–201.
  • Picu RC. A mechanism for the negative strain-rate sensitivity of dilute solid solutions. Acta Materialia. 2004;52(12):3447–3458.
  • Curtin WA, Olmsted DL, Hector LG. A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat Mater. 2006;5(11):875.
  • Venkadesan S, Phaniraj C, Sivaprasad PV, et al. Activation energy for serrated flow in a 15Cr-5Ni Ti-modified austenitic stainless steel. Acta Metallurgica et Materialia. 1992;40(3):569–580.
  • Alomari AS, Kumar N, Murty KL, Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%), Materials Science and Engineering: (2019) 292–302.
  • Choudhary BK, Activation energy for serrated flow in type 316L(N) austenitic stainless steel, Materials Science and Engineering: (2014) 160–168.
  • Meng LJ, Sun J, Xing H, et al. Serrated flow behavior in AL6XN austenitic stainless steel. J Nucl Mater. 2009;394(1):34–38.
  • Sun H. Ig, Influence of dynamic strain aging on the apparent activation energy for creep. Mat Sci Eng. 1984;64(2):L19–L21.
  • Narendrnath KR, Margolin H, Jung YH, et al. A personal computer based system to evaluate J-integral by a single specimen unloading compliance method—part II: results on A533B class I steel and corona-5. Eng Fract Mech. 1988;30(3):349–359.
  • Hong SI, Ryu WS, Rim CS. Elongation minimum and strain rate sensitivity minimum of zircaloy-4. J Nucl Mater. 1983;116(2–3):314–316.
  • Choudhary BK, Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel, Metallurgical and Materials Transactions: (2014) 302–316.
  • Bouchaud E, Kubin L, Octor H, Ductility and dynamic strain aging in rapidly solidified aluminum alloys, Metallurgical Transactions: (1991) 1021–1028.
  • Doner M, Conrad H, Deformation mechanisms in commercial Ti (0.5 at. pct oineq) at intermediate and high temperatures (0.3–0.6 tinm), Metallurgical Transactions (1973) 2809–2817.
  • Gupta C, Chakravartty JK, Wadekar SL, et al., Effect of serrated flow on deformation behaviour of AISI 403stainless steel, Materials Science and Engineering: (2000) 49–55.
  • Michel DJ, Moteff J, Lovell AJ. Substructure of type 316 stainless steel deformed in slow tension at temperatures between 21° and 816°C. Acta Metall. 1973;21(9):1269–1277.
  • Samuel KG, Ray SK, Sasikala G. Dynamic strain ageing in prior cold worked 15Cr–15Ni titanium modified stainless steel (Alloy D9). J Nucl Mater. 2006;355(1–3):30–37.
  • Xiong X, Quan D, Dai P, et al., Tensile behavior of nickel-base single-crystal superalloy DD6, Materials Science and Engineering: (2015) 608–612.
  • Brindley BJ. The effect of dynamic strain-ageing on the ductile fracture process in mild steel. Acta Metall. 1970;18(3):325–329.
  • Mahmood S, Al-Otaibi K, Jung Y, et al. Dynamic Strain-Aging and Neutron Irradiation Effects on Mechanical and Fracture Properties of A533B Class 1 PV Steel and 2.25Cr-1Mo Steel. J Test Eval. 1990;18(5):332–337.
  • Srinivas M, Malakondaiah G, Murty KL, et al. Fracture Toughness in the Dynamic Strain Ageing Regime. Scr Metall Mater. 1991;25(11):2585–2588.
  • Seok CS, Murty KL. Effect of dynamic strain aging on mechanical and fracture properties of A516Gr70 steel. Int J Press Vessels Pip. 1999;76(14–15):945–953.
  • Yoon JH, Lee BS, Oh YJ, et al. Effects of loading rate and temperature on J–R fracture resistance of an SA516-Gr.70 steel for nuclear piping. Int J Press Vessels Pip. 1999;76(9):663–670.
  • Verma P, Sudhakar Rao G, Chellapandi P, et al., Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr–1Mo steel, Materials Science and Engineering: (2015) 39–51.
  • Warda RD, Fidleris V, Teghtsoonian E. Dynamic strain aging during creep of α-Zr. Metall Trans. 1973;4(5):1201–1206.
  • Černý V, Čadek J. Creep, the Portevin-Le Chatelier effect and dynamic strain aging in 18Cr-12Ni and 17Cr-3Ni-2.5Mo stainless steels. Mat Sci Eng. 1984;66(1):89–96.
  • Da Silveira TL, Monteiro SN. Jumps in the creep curve of austenitic stainless steels. Metall Trans A. 1979;10(11):1795–1796.
  • Sikka VK, David SA. Discontinuous creep deformation in a type 316 stainless steel casting. Metall Trans A. 1981;12(5):883–892.
  • Linga Murty K. Transitional creep mechanisms in Al-5Mg at high stresses. Scr Metall. 1973;7(9):899–903.
  • Ig Hong S. Influence of dynamic strain aging on the stress exponent and the dislocation substructure for the creep of Al-Mg alloys. Mat Sci Eng. 1986;82:175–185.
  • Valsan M, Sastry DH, Rao KBS, et al. Effect of strain rate on the high-temperature low-cycle fatigue properties of a nimonic PE-16 superalloy. Metall Mater Trans A. 1994;25(1):159–171.
  • Srinivasan VS, Sandhya R, Valsan M, et al. The influence of dynamic strain ageing on stress response and strain-life relationship in low cycle fatigue of 316L(N) stainless steel. Scr Mater. 1997;37(10):1593–1598.
  • Hong S-G, Lee K-O, Lee S-B. Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel. Int J Fatigue. 2005;27(10–12):1420–1424.
  • Choi IS, Nam SW, Rie K-T. Mechanism of the fatigue life increment due to dynamic strain ageing during hold time. J Mater Sci. 1985;20(7):2446–2458.
  • Rao KBS, Schuster H, Halford GR. Mechanisms of high-temperature fatigue failure in alloy 800H. Metall Mater Trans A. 1996;27(4):851–861.
  • Jiang H, Chen X, Fan Z, et al. Influence of dynamic strain aging pre-treatment on creep-fatigue behavior in 316L stainless steel. Mater Sci Eng A. 2009;500(1–2):98–103.
  • Carroll LJ, Lloyd WR, Simpson JA, et al. The influence of dynamic strain aging on fatigue and creep-fatigue characterization of nickel-base solid solution strengthened alloys. Mater High Temp. 2010;27(4):313–323.
  • Murty KL, Hall EO. Dynamic Strain-Aging and Neutron Irradiation in Mild Steel in: irradiation Effects on the Microstructure and Properties of Metals. Astm Stp. 1976;611:53–71.
  • Murty KL. Is neutron radiation exposure always detrimental to metals (steels)? Nature. 1984;308(5954):51.
  • Linga Murty K. Role and significance of source hardening in radiation embrittlement of iron and ferritic steels. J Nucl Mater. 1999;270(1–2):115–128.
  • Murty KL, Charit I, An Introduction to Nuclear Materials: fundamentals and Applications, Wiley-VCH 2013.
  • Mannan SL, Samuel KG, Rodriguez P. The Influence of Grain Size on Elevated Temperature Deformation Behaviour of a Type 316 Stainless Steel. In: Gifkins RC, editor. Strength of Metals and Alloys (ICSMA 6). Melbourne: Pergamon; 1982. p. 637–642.
  • Fahr D, Analysis of stress-strain behavior of type 316 stainless steel., United States. 1973. doi:10.2172/4388210.
  • Samuel KG, Mannan SL, Rodriguez P. Influence of Warm Working on the Temperature Dependence of the Strength and Ductility of 316 Stainless Steel. J Mech Behav Mater. 1992;3(4):225–244.
  • Samuel KG, Mannan SL, Rodriguez P. Serrated Yielding in AISI 316 Stainless Steel. Acta Metall. 1988;36(8):2323–2327.
  • Beese AM, Wang Z, Stoica AD, et al. Absence of dynamic strain aging in an additively manufactured nickel-base superalloy. Nat Commun. 2018;9(1):2083.
  • Hall EO, Yield Point Phenomena in Metals and Alloys, Macmillan 1970.
  • Tamhankar R, Plateau J, Crussard C. Étude de la déformation plastique à chaud d’un fer doux et d’une austénite stable au nickel-chrome. Rev Met Paris. 1958;55(4):383–400.
  • Peng K, Qian K, Chenb W. Effect of dynamic strain aging on high temperature properties of austenitic stainless steel. Mater Sci Eng A. 2004;379(1–2):372–377.
  • Almeida LHD, May IL, Monteiro SN. Athermal And Temperature Dependent Behavior of Serrated Flow In An Austenitic Stainless Steel. Scr Mater. 1985;19(12):1451–1454.
  • Almeida LHD, May IL, Monteiro SN. Effects of Carbon and Nitrogen Levels on the Temperture Ranges for Serrated Flow in Austenitic Stainless Steel. In: McQueen HJ, Bailon JP, Dickson JI, et al., editors. Strength of Metals and Alloys (1CSMA 7). Oxford: Pergamon Press; 1985. p. 337–342.
  • Hong S-G, Lee S-B. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging. Int J Fatigue. 2004;26(8):899–910.
  • Hong S-G, Lee S-B. Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel. J Nucl Mater. 2005;340(2–3):307–314.
  • Jenkins CF, Smith GV. Serrated Plastic Flow in Austenitic Stainless Steel Trans. Metall Soc. 1969;245:2149–2156.
  • Nikulin I, Kaibyshev R. Deformation behavior and the Portevin-Le Chatelier effect in a modified 18Cr–8Ni stainless steel. Mater Sci Eng A. 2011;528(3):1340–1347.
  • Rose KSB, Glover SG. A study of strain-ageing in austenite. Acta Metall. 1966;14(11):1505–1516.
  • Jenkins CF, Smith GV. Effect of Interstitial Impurities and Plastic Strain on the Aging Behavior of A 35Ni_15Cr_Steel. J Iron Steel Inst. 1968;206:1267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.