175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decarburisation of 60Si2MnA in wet air at 1000 – 1280 °C

, , &
Pages 21-43 | Received 26 Dec 2020, Accepted 08 Nov 2021, Published online: 20 Dec 2021

References

  • Chinese National Standard. GB/T 1222 – 2016: Spring Steels; 2017.
  • Assefpour-Dezfuly M, Brownrigg A. Parameters affecting sag resistance in spring steels. Metall Trans. 1989;20A:1951–1959.
  • Brownrigg A, Sritharan T. Spring steel hysteresis. Mater Forum. 1987;10:58–63.
  • Kenneford AS. A comparison of six spring steels. J Iron Steel Inst. 1950;164:265–277.
  • Gildersleeve MJ. Relationship between decarburisation and fatigue strength of through hardened and carburising steels. Mater Sci Technol. 1991;7(4):307–310.
  • Nomura M, Morimoto H, Toyama M. Calculation of ferrite decarburizing depth, considering chemical composition of steel and heating conditions. ISIJ Inter. 2000;40:619–623.
  • Li D, Anghelina D, Burzic D, et al. Investigation of decarburization in spring steel production process – part I: experiments. Steel Res Int. 2009;80:298–303.
  • Li D, Anghelina D, Burzic D, et al. Investigation of decarburization in spring steel production process – part II: simulation. Steel Res Int. 2009;80:304–310.
  • Zhang C, Liu Y, Zhou L, et al. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions. Int J Miner Metall Mater. 2012;19:116–121.
  • Zhang C, Zhou L, Liu Y. Surface decarburization characeristics and relation between decarburized types and heating temperature of spring steel 60Si2MnA. Int J Miner Metall Mater. 2013;20:720–724.
  • Choi S, Zwaag S. Prediction of decarburized ferrite depth on hypoeutectoid steel with simultaneous oxidation. ISIJ Inter. 2012;52:549–558.
  • Choi S, Lee Y. An approach to predict the depth of the decarburized ferrite layer of spring steel based on measured temperature history of material during cooling. ISIJ Inter. 2014;54:1682–1689.
  • Shi X, Zhao L, Wang W, et al. Decarburization sensitivities of several spring steels used for high-speed trains. Trans Mater Heat Treat. 2013;34(7):47–52. (In Chinese). 1009-6264 (2013) 07-0047-06.
  • Liu Y, Zhang W, Tong Q, et al. Effects of temperature and oxygen concentration on characteristics of decarburization of 55SiCr spring steel. ISIJ Inter. 2014;54:1920–1926.
  • Liu Y, Zhang W, Tong Q, et al. Effects of Si and Cr on complete decarburization behaviour of high carbon steels in atmosphere of 2 vol.%O2. Int J Iron Steel Res. 2016;23:1316–1322.
  • Zhao F, Zhang CL, Xiu Q, et al. Surface decarburization behaviour of spring steel 60Si2MnA under AC1 temperature and in temperature range AC3-G. Mater Sci Forum. 2015;817:132–136.
  • Zhao F, Zhang C, Liu Y. Ferrite decarburization of high silicon spring steel in three temperature ranges. Arch Metall Mater. 2016;61:1715–1722.
  • Pennington WA. A mechanism of the surface decarburization of steel. Trans Am Soc Met. 1946;37:48–109.
  • Birks N. Mechanism of decarburization. In: Decarburization, ISI Publication 133. London: The Iron and Steel Institute; 1969. p. 1–12.
  • Birks N, Meier G, Pettit FS. Decarburization of steels In: Introduction to the high-temperature oxidation of metals, First. London: Edward Arnold; 1983. p. 175–184. Oxidation and decarburization of steels, Second Edition, Cambridge University Press, Cambridge, UK, 2006: 151-162.
  • Chen RY, Yuen WYD. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxid Met. 2003;59:433–468.
  • Rahmel A, Tobolski J. Effects of water vapour and carbon dioxide on the oxidation of Fe-Si alloys in oxygen at the temperature range of 750-1050°C. Werkstoffe und Korrosion. 1965;16:662–676. in German.
  • Rahmel A. On the effect of water vapour and carbon dioxide on iron and iron-silicon steel alloy at high temperatures. Werkstoffe und Korrosion. 1965;16:837–843. in German.
  • Fukumoto M, Maeda S, Hayashi S, et al. The effect of temperature and water vapour on the initial stage of high temperature oxidation of an Fe-1.5mass%Si alloy. Tetsu-to-Hagane. 2000;86:526–533. in Japanese.
  • Mouayd AA, Koltsov A, Sutter E, et al. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Mater Chem Phys. 2014;143:996–1004.
  • Baud J, Ferrier A, Manenc J, et al. The oxidation and decarburization of Fe-C alloys in air and the influence of relative humidity. Oxid Met. 1975;9:69–97.
  • Chen YR, Liu Y, Xu X. Oxidation of 60Si2MnA in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700-1000 °C. Oxid Met. 2020;93:53–74.
  • Chen YR, Xuanxuan X, Liu Y. Decarburization of 60Si2MnA in atmospheres containing different levels of oxygen, water vapour and carbon dioxide at 700-1000 °C. Oxid Met. 2020;93:105–129.
  • Chen YR, Zhang F, Liu Y. Decarburization of 60Si2MnA in 20 Pct H2O-N2 at 700 °C to 900 °C. Metall Mater Trans A. 2020;51:1808–1821.
  • Mishima T, Supiyama M. Study on high temperature oxidation of iron and its alloys (V). Tetsu-to-Hagané. 1950;36:184–189. in Japanese.
  • Chen YR. Oversight or new insight? Comments on several recent papers studying high-temperature oxidation of Si-containing steels. Oxid Met. 2020;93:1–15.
  • The Energy Technology Support Unit (ETSU) and British Steel. Good practice guide 76: continuous steel reheating furnaces: specification, design and equipment, energy efficiency office. UK: Department of The Environment; 1993.
  • Chen RY, Yuen WYD. Examination of oxide scales of hot rolled steel products. ISIJ Inter. 2005;45(1):52–59.
  • Sachs K. Decarburization: definition and measurement. Decarburization. 1969;133:13–33. ISI Publication.
  • Beaumont R. Recent works experience of decarburization. Decarburization. London: The Iron and Steel Institute. ISI Publication 133; 1969. p. 34–53.
  • E 1077 – 01. Standard test methods for estimating the depth of decarburization of steel specimens. PA United States: ASTM International; 2001.
  • Vander Voort GF. Understanding and measuring decarburization. Adv Mater Processes. 2015 February;22–27.
  • Australian Standard®. Carbon and low alloy steel – measurement of decarburization. AS 2003 – 1991, Reconfirmed 2016, Standards Australia, NSW, Australia.
  • Cao W, Chen S-L, Zhang F, et al. Pandat software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and material property simulation. CALPHAD. 2009;33:328–342.
  • PanFe. Thermodynamic database for Fe-based alloys. Middleton WI: CompuTherm, LLC; 2019, [cited 15 October 2020]. www.computherm.com
  • Jablonka A, Harste K, Schwerdtfeger K. Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction. Steel Res Int. 1991;62:24–33.
  • Chen RY. Reduction of wustite scale by dissolved carbon in steel at 650 – 900 °C. Oxid Met. 2018;89:1–31.
  • Richardson FD, Jeffes JHE. Thermodynamics of substances of interest in iron and steelmaking from 0° C to 2400° C. J Iron Steel Inst. 1948;160:261–270.
  • Richardson FD, Jeffes JHE. The Thermodynamic background of iron and steek making process: i-The blast-furnace. J Iron Steel Inst. 1949;163:397–420.
  • Richardson FD, Jeffes JHE, Withers G. “Thermodynamics of substances of interest in iron and steel making. J Iron Steel Inst. 1950;166:213–234.
  • Webbs WW, Norton JT, Wagner C. Oxidation studies in metal-carbon systems. J Electrochem Soc. 1956;103:112–117.
  • Engell HJ, Bohnenkamp K, in: First international congress on metallic corrosion, London, 10-15 April, 1961, Paper III.5 (Butterworths, London, 1961), p.215.
  • Chen RY, Yuen WYD. Oxidation of a low carbon, low silicon steel in air at 600 – 920 °C. Mater Sci Forum. 2006;522-523:77–86.
  • Birks N, Meier GH, Pettit FS. Introduction to the high-temperature oxidation of metals. 2nd ed. Cambridge: Cambridge University Press; 2006. p. 178.
  • Brennan CE. Cavitation and bubble dynamics. Cambridge: Cambridge University Press; 2013. p. 8–15.
  • Clark JA. The thermodynamics of bubbles. Technical Report No. 7: Massachusetts Institute of Technology; 1956.
  • Falsetti LOZ, Muche DNF, Junior TS, et al. Theremodynamics of smart bubbles: the role of interfacial energies in porous ceramic production and non-metallic inclusion removal. Ceram Int. 2021;47:14216–14225.
  • Ellis T, Davidson IM, Bodsworth C. Some thermodynamic properties of carbon in austenite. J Iron Steel Inst. 1963;201:582–587.
  • Kirkaldy JS, Thomson BA, Baganis EA. Prediction of multicomponent equilibrium and transformation diagrams for low alloy steels. In: Doane DV, Kirkaldy JS, editors. Hardenability concepts with applications to steel. Warrendale PA: The Mellallurgical Society of AIME; 1978. p. 82–125.
  • Uhrenius B. A compendium of ternary iron-base phase diagrams. In: Doane DV, Kirkaldy JS, editors. Hardenability concepts with applications to steel. Warrendale PA: The Mellallurgical Society of AIME; 1978. p. 28–81.
  • Leslie WC. The physical metallurgy of steels. New York: Hemiphere Publishing Corporation and McGraw-Hill Book Company; 1981. p. 73–74.
  • Jost: W. Diffusion in solids, liquids and gases. New York: Academic Press Inc.; 1960. p. 69–71.
  • Collin R, Gunnarson S, Thulin D. A mathematical model for predicting carbon concentration profiles of gas-carburized steel. J Iron Steel Inst. 1972;210:785–789.
  • Asimov RM. Analysis of the variation of diffusion constant of carbon in austenite with concentration. Trans Metall Soc AIME. 1964;230:611–613.
  • Smith RP. The diffusivity of carbon in iron by the steady-state method’. Acta Metall. 1953;1:578–587.
  • Wells C, Batz W, Mehl RF. Diffusion coefficient of carbon in austenite. Transact AIME. 1950;188:553–560.
  • Krishtal: MA. Diffusion processes in iron alloys. Jerusalem: Israel Program for Scientific Translations; 1970. p. 90–133.
  • Babu SS, Bhadeshia HKDH. Diffusion of carbon in substitutional alloyed austenite. J Mater Sci Lett. 1995;14:314–316.
  • Lee S-J, Matlock DK, Van Tyne CJ. Carbon diffusivity in multi-component austenite. Scr Mater. 2011;64:805–808.
  • Roy SK, Grabke HJ, Düsseldorf WW. Diffusivity of carbon in austenitic Fe-Si-C alloys. Arch Eisenhüttenwess. 1980;51:91–96.
  • Bowen NL, Schairer JF. The system, FeO-SiO2. Am J Sci. 1932;24(141):177–213. Series 5.
  • Chen YR, Liu Y, Li C. Comparison of the oxidation behaviour of 60Si2MnA at 800 – 1200 °C in dry and wet air. Mater High Temp. 2020;37:279–294.
  • Parrish G, Harper GS. Production Gas Carburising, Pergamon Press. New York: Oxford; 1985. p. 114–116.
  • Lee S-J, Matlock DK, Von Tyne CJ. An empirical model for carbon diffusion in Austenite incorporating alloying element effects. ISIJ Inter. 2011;51:1903–1911.
  • Bhadeshia HKDH. A commentary on: “Diffusion of carbon in austenite with a discontinuity in composition. Metall Mater Trans A. 2010;41A:1605–1615.
  • Nishibata T, Kohtake T, Kajihara M. Kinetic analysis of uphill diffusion of carbon in austenite phase of low-carbon steels. Mater Trans. 2020;61:909–918.
  • Blanter ME. Diffusion processes in austenite and hardenability of alloyed steels. Thesis. Moscow: Moskovski Institut Stali; 1949.
  • Darken LS. Diffusion of carbon in Austenite with a discontinuity in composition. Transact AIME. 1949;180:430–438.
  • Krishtal: MA. Diffusion processes in iron alloys. Jerusalem: Israel Program for Scientific Translations; 1970. p. 109–114.
  • Wu P, Eriksson G, Pelton AD, et al. Prediction of the thermodynamic properties and phase diagrams of silicate systems – evaluation of the FeO-MgO-SiO2 system. ISIJ Inter. 1993;33:26–35.
  • Wada T, Wada H, Elliott JF, et al. Thermodynamics of the FCC Fe-Mn-C and Fe-Si-C alloys. Metall Trans. 1972;3:1657–1662.
  • Poirier DR. Activity of carbon in austenite. Trans Metall Soc AIME. 1968;242:685–690.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.