170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A unified constitutive approach for creep response of AISI 316 steel produced by conventional technologies or additive manufacturing techniques

ORCID Icon
Pages 48-63 | Received 31 Aug 2022, Accepted 06 Nov 2022, Published online: 16 Nov 2022

References

  • Morris DG, Harries DR. Creep and rupture in Type 316 stainless steel at temperatures between 525 and 900°C. Part I: creep rate. Metal Sci. 1978;12(11):525–531.
  • Mathew MD, Sundararaman M, Mannan SL. Dislocation substructure and precipitation in type 316 stainless steel deformed in creep. Mater Trans JIM. 1997;38(1):37–42.
  • Rieth M, Falkenstein A, Graf P, et al., . Zimmermann.Creep of the austenitic steel AISI 316 L(N). Experiments and models. Research Center Karlsruhe GmbH Technology and Environment (Germany). Institute for Materials Research - Nuclear Fusion program, Report FZKA-7065, November 2004. available at: https://d-nb.info/973572558/34
  • Rieth M. A comprising steady-state creep model for the austenitic AISI 316 L(N) steel. J Nucl Mater. 2007;367–370:915–919.
  • Monteiro SN, Santos da Luz F, Pinheiro WA, et al. Creep parameters and dislocation substructure in AISI 316 austenitic stainless steel from 600°C to 800°C. Mater Res. 2017;20(suppl 2):231–235.
  • Wasnik DN, Dey GK, Kain V, et al. Precipitation stages in a 316L austenitic stainless steel. Scr Mater. 2003;49(2):135–141.
  • Sahlaoui H, Makhlouf K, Sidhom H, et al. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results. Mater Sci Eng A. 2004;372(1–2):98–108.
  • Padilha AF, Escriba DM, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600°C up to 10 years. J Nucl Mater. 2007;362(1):132–138.
  • Öhlin O, Chai G, Siriki R. Structural Stability of Sandvik 3R60™ After 240 131 Hours Ageing and Creep Test at 700 °C. Trans Indian National Academy Engineering. 2022;7(2):625–633.
  • Li M, Zhang X, Chen W-Y, et al. Creep behavior of 316 L stainless steel manufactured by laser powder bed fusion. J Nucl Mater. 2021;548:152847.
  • Williams RJ, Al-Lami J, Hooper PA, et al. Creep deformation and failure properties of 316 L stainless steel manufactured by laser powder bed fusion under multiaxial loading conditions. Addit Manuf. 2021;37:101706.
  • Li M, Chen W-Y, Zhang X. Effect of heat treatment on creep behavior of 316 L stainless steel manufactured by laser powder bed fusion. J Nucl Mater. 2022;559:153469.
  • Avila Calderon LA, Rehmer B, Schriever S, et al. Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion. Mater Sci Eng A. 2022;830:142223.
  • Sasikala G, Mathew MD, Bhanu Sankara Rao K, et al. Creep deformation and fracture behavior of types 316 and 316L (N) stainless steels and their weld metals. Metall Mater Trans A. 2000;31(4):1175–1185.
  • Mathew MD, Laha K, Ganesan V. Improving creep strength of 316L stainless steel by alloying with nitrogen. Mater Sci Eng A. 2012;535:76–83.
  • Sandström R, Andersson HCM. Creep in phosphorus alloyed copper during power-law breakdown. J Nucl Mater. 2008;372(1):76–88.
  • Sandström R. Basic model for primary and secondary creep in copper. Acta Materialia. 2012;60(1):314–322.
  • Sandström R. Influence of phosphorus on the tensile stress strain curves in copper. J Nucl Mater. 2016;470:290–296.
  • Sandström R. The role of cell structure during creep of cold worked copper. Mater Sci Eng. 2017;A674:318–327.
  • Korzhavyi PA, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength. Mater Sci Eng. 2015;A626:213–219.
  • He J, Sandström R. Basic modelling of creep rupture in austenitic stainless steels. Theor Appl Fract Mech. 2017;89:139–146.
  • Spigarelli S, Paoletti C. A new model for the description of creep behaviour of aluminium-based composites reinforced with nanosized particles. Compos Part A. 2018;112:346–355.
  • Spigarelli S, Paoletti C A unified Physical Model for Creep and Hot Working of Al-Mg Solid Solution Alloys . Metals. 2018 8 ;9. DOI:10.3390/met8010009
  • Ghat M, El Mehtedi M, Ciccarelli D, et al. High temperature deformation of IN718 superalloy: use of basic creep modelling in the study of Nickel and single-phase Ni-based superalloys. Mater High Temp. 2018. DOI:10.1080/09603409.2018.1456508
  • Choudhary BK. Influence of strain rate and temperature on tensile deformation and fracture behavior of type 316L(N) austenitic stainless steel. Metall Mater Trans A. 2014;45A(1):302–316.
  • Sahlaoui H, Sidhom H. Experimental investigation and analytical prediction of σ-phase precipitation in AISI 316L austenitic stainless steel. Metall Mater Trans A. 2013;44A(7):3077–3083
  • Spigarelli S. Microstructure-based assessment of creep rupture strength in 9Cr steels. Int J Press Vessels Pip. 2013;101:64–71.
  • Santecchia E, Cabibbo M, Ghat M, et al. Physical modeling of the creep response of an Al–Cu–Mg alloy with a fine microstructure transformed by Friction Stir Processing. Mater Sci Eng A. 2020;769:138521.
  • Sandström R, Farooq M, Zurek J. Basic creep models for 25Cr20NiNbNcaustenitic stainless steels. Mater Res Innovations. 2013;17(5):355–359.
  • Kondo Y, Matsuo T, Tanaka R. Temperature Dependence of the Solid Solution Strengthening Effect of Group IVb, Vb and VIb Elements on the High Temperature Creep Behaviors of Carbon Free 25Cr-35Ni Steels. Tetsu-to-Hagane. 1982;68(6):690–697.
  • Sritharan T, Jones H. Creep of type 316 stainless steel at low stresses Metal Science . 1981;15:65–368.
  • Kubo K, Ohba T, Kimura K, et al. Effect of microstructural evolution on complex creep deformation behaviour of SUS 316 steel at 823K and 923K. CAMP-ISIJ. 1996;9:1435.
  • Praveen C, Christopher J, Ganesan V, et al. Constitutive modelling of transient and steady state creep behaviour of type 316LN austenitic stainless steel. Mech Mater. 2019;137:103122.
  • Beckitt FR, Banks TM, Gladman T. Secondary creep deformation in 18%Cr- Creep Strength in 18%Cr-10%Ni steel, in Steel and High Temperature Alloys. The Metals Society:London;1974. p. 71–77.
  • Gold M, Leyda WE, Zeisloft RH. The effect of varying degrees of cold work on the stress-rupture properties of type 304 stainless steel. J Eng Mater Technol. 1975;97(4):305–312.
  • Chopra OK, Natesan K. Interpretation of high-temperature creep of type 304 stainless steel. Metall Transaction A. 1977;8(4):633–638.
  • Natesan K, Chopra OK, Zeman GJ, et al. Effect of sodium environment on the creep-rupture and low-cycle fatigue behavior of austenitic stainless steels. Proc. International working group on fast reactors (IAEA/IWGFR) specialists meeting, Bensburg, F.R. Germany, 1977 Oct 17 available at: https://digital.library.unt.edu/ark:/67531/metadc1052404/
  • Swindeman RW, Bhargava RK, Sikka VK, et al. Substructure developed during creep and cyclic tests of type 304 stainless steel (Heat 9T2796). In: ORNL-5293 TRN. Oak Ridge, Tenn. Usa: Oak Ridge National Laboratory; 1977. p. 77–019121. DOI:10.2172/7295286
  • Nakazawa T, Abe H. The effects of some factors on the creep behavior of type 304 stainless steel Tetsuo-to-Hagane J-Stage. 1977;63:1150–1159.
  • Sourmail T. Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol. 2001;17(1):1–14.
  • Hu J, Green G, Hogg S, et al. Effect of microstructure evolution on the creep properties of a polycrystalline 316H austenitic stainless steel. Mat Sci Eng. 2020;A772:138787.
  • Holmström S. Negligible creep temperature curves for EN-13445, JRC Contribution to Standard CEN/TC 54/WG 59. Netherlands. 2017. DOI:10.2760/957726
  • Voisin T, Forien J-B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Materialia. 2021;203:116476.
  • Paoletti C, Santecchia E, Cabibbo M, et al. Modelling the creep behavior of an AlSi10Mg alloy produced by additive manufacturing. Mater Sci Eng A. 2021;799:140138.
  • Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 1983;31(9):1367–1379.
  • Rothman MF, editor. In: High-Temperature Property data: ferrous alloys (Metals Park, Ohio 44073, USA: ASM International). 1988. 9.48.
  • Generic recommendations and guidance for the assessment of full size creep rupture dataset- ECCC Recommendations available for downloading at https://www.eccc-creep.com/eccc-recommendations-volumes.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.