861
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oxidation of SS304 and SS316 and the formation of diffusionally isolated regions leading to localised premature breakaway oxidation

&
Pages 318-330 | Received 24 Jan 2023, Accepted 31 Jan 2023, Published online: 25 Feb 2023

References

  • Whittle DP, Stringer J. VIII. Improvement in properties additives in oxidation resistance. Phil Trans R Soc Load. 1980;A 295:309–329.
  • Stott FH. The protective action of oxide scales in gaseous environments at high temperature. Rep Prog Phys. 1987;50:861–913.
  • Stott FH, Wood GC, Stringer J. The influence of alloying elements on the development and maintenance of protective scales. Oxid Met. 1995;44(1/2):113–145.
  • Vossen JPT, Gawenda P, Rahts K, et al. Limits of the oxidation resistance of several heat-resistant steels under isothermal and cyclic oxidation as well as under creep in air at 650°C. Mat High Temp. 1997;14(4):387–401.
  • Bauer R, Baccalaro M, Jeurgens LPH, et al. Oxidation behavior of Fe–25Cr–20Ni–2.8Si during isothermal oxidation at 1,286 K; life-time prediction. Oxid Met. 2008;69:265–285.
  • Bainbridge JE, Horsley GW, Cairns JA, et al., UK patent: GB 2 097 821A. Carbon Deposition Inhibition; 1982.
  • Evans HE, Hilton DA, Holm RA, et al. Influence of Silicon Additions on the Oxidation Resistance of a Stainless Steel. Oxid Met. 1983;19:1–18.
  • Bennett MJ, Desport JA, Labun PA. Analytical electron microscopy of a selective oxide scale formed on 20% Cr-25% Ni-Nb stainless steel. Oxid Met. 1984;22(5/6):291–306.
  • Bennett MJ, Desport JA, Labun PA. Transverse microstructure of an oxide scale formed on a 20% Cr-25% Ni-niobium stabilised stainless steel. Math Phy Sci. 1987;412:223–230.
  • Lobb RC, Sasse JA, Evans HE. Dependence of oxidation behaviour on Si content of steels. Mat Sci Tech. 1989;5(8):828–834
  • Ding R, Taylor MP, Chiu YL, et al. Influence of Pre-oxidation on filamentary carbon deposition on 20Cr25Ni stainless steel. Oxid Met. 2019;91(5–6):589–607.
  • Zurek J, Young DJ, Essuman E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases’. Mater Sci Eng A. 2008;447(1–2):259–270.
  • Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. J Elect Chem Soc. 1952;99(10):369–380
  • Wagner C. Oxidation of alloys involving noble metals. J Elect Chem Soc. 1956;103(10):571–579
  • Evans HE, Donaldson AT, Gilmour TC. Mechanisms of breakaway oxidation and application, to a chromia-forming steel. Oxid Met. 1999;52(5/6):379–402.
  • Bastow BD, Whittle DP, Wood GC. Alloy depletion profiles resulting from the preferential removal of the less noble metal during alloy oxidation. Oxid Met. 1978;12(5):413–438.
  • Nesbitt JA, Heckel RW. Modelling degradation and failure of Ni-Cr-A1 overlay coatings. Thin Solid Films. 1984;119(3):281–290.
  • Evans HE, Donaldson AT. Silicon and chromium depletion during the long-term oxidation of thin-sectioned austenitic steel. Oxid Met. 1998;50(5/6):457–475.
  • Quadakkers WJ, Bongark K. The prediction of breakaway oxidation for alumina forming ODS alloys using Oxidation Diagrams. Mat Corro. 1994;4(5):232–241.
  • Nesbitt JA, Heckel RW. Interdiffusion in Ni-Rich, Ni-Cr-AI Alloys at 1100 and 1200 °C~ Part II. diffusion coefficients and predicted concentration profiles. Met Trans A. 1987;18:2075–2086.
  • Nijdam TJ, Jeurgens LPH, Sloof WG. Modelling the thermal oxidation of ternary alloys compositional changes in the alloy and the development of oxide phases. Acta Materialia. 2003;51:5295–5307.
  • Chyrkin A, Huczkowski P, Shemet V, et al. Sub-scale depletion and enrichment processes during high temperature oxidation of the nickel base alloys 625 in the temperature range 900-1000 °C. Oxid Met. 2011;75:143–166.
  • Pragnell WM, Evans HE. A finite-difference model to predict 2D depletion profiles arising from high temperature oxidation of alloys. Model Simul Mater Sci Eng. 2006;14:733–740.
  • Pragnell WM, Evans HE. Chromium Depletion at 2-Dimensional Features during the Selective Oxidation of a 20Cr–25Ni Austenitic Steel. Oxid Met. 2006;66(3/4):209–230.
  • Moore P. Stainless steel grade selection. Atlas steels. 2020 , https://www.atlassteels.com.au
  • smst_booklet_304_2008.pdf. Salzgitter Mannesmann, 2008. 2020. https://salzgitter-mannesmann-uk.com
  • smst_booklet_304l_2008.pdf. Salzgitter Mannesmann, 2008. 2020. https://salzgitter-mannesmann-uk.com
  • smst_booklet_304ln_2008.pdf. Salzgitter Mannesmann, 2008. 2020. https://salzgitter-mannesmann-uk.com
  • Ellingham HJT. Reducibility of oxides and sulphides in metallurgical processes. J Soc Chem Ind. 1944;63:125–133.
  • Richardson FD, Jeffes HEJ. The thermodynamics of substances of interest in iron and steel making from 0 °C to 2400 °C. J Iron Steel Inst. 1948;160:261–273.
  • Hansson AN, Hattel JH, Dahl KV, et al. Modelling Cr depletion under a growing Cr2O3 layer on austenitic stainless steel: the influence of grain boundary diffusion Modelling Simul. Mater Sci Eng. 2009;17:1–19.
  • Evans HE, Taylor MP. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems. Oxid Met. 2001;55:17–34.
  • Mizouchi M, Yamazaki Y, Iijima Y, et al., Low temperature grain boundary diffusion of chromium in SUS316 and 316L stainless steels. Mat Trans. 2004;45:2945–2950.
  • Mehta A, Belova IV, Murch GE, et al. Measurement of interdiffusion and tracer diffusion Coefficients in FCC Co-Cr-Fe-Ni multi-principal element alloy. J Phase Equilib Diffus. 2021;42:696–707.
  • Taylor MP, Pragnell WM, Evans HE. The influence of bond coat surface roughness on chemical failure and delamination in TBC systems. Mat Corro. 2008;59:508–513.