1,231
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A microscopy study of nickel-based superalloys performance in type I hot corrosion conditions

, ORCID Icon, , , &
Pages 272-282 | Received 21 Feb 2023, Accepted 28 Feb 2023, Published online: 10 Mar 2023

References

  • Morad A, Shash Y. Nickel base superalloys used for aero engine Turbine blades. Int Conf Appl Mech Mech Eng. 2014;16(16):1–22.
  • Eliaz N, Shemesh G, Latanision RM. Hot corrosion in gas turbine components. Eng Fail Anal. 2002;9(1):31–43.
  • Kolagar AM, Tabrizi N, Cheraghzadeh M, et al. Failure analysis of gas turbine first stage blade made of nickel-based superalloy. Case Stud Eng Fail Anal. 2017;8:61–68.
  • Ma X, Shi H-J. On the fatigue small crack behaviors of directionally solidified superalloy DZ4 by in situ SEM observations. Int J Fatigue. 2012 Feb;35(1):91–98.
  • Pettit F. Hot corrosion of metals and alloys. Oxid Met. 2011;76(1):1–21.
  • Syed AU, Martinez FD, Roberts T, et al. Performance comparison between isothermal hot corrosion and in situ cyclic hot corrosion of nickel-based superalloys. Oxid Met. 2021;96(1):43–55. DOI:10.1007/s11085-021-10044-9
  • Rapp RA. Hot corrosion of materials: a ̄fluxing mechanism? Corros Sci. 2002;44(2):201–221.
  • Nicholls JR, Simms NJ, 1.20 - Gas Turbine oxidation and corrosion, Cottis B, Graham M, Lindsay R, Lyon S, Richardson T, Scantlebury D, and Stott C B H. editor. Oxford: Elsevier; 2010. pp. 518–540.
  • Gurrappa I. The importance of hot corrosion and its effective prevention for enhanced efficiency of gas Turbines. Yashwanth IVS (editor). Rijeka: IntechOpen; 2015. 3. p. Ch.
  • Sommitsch C, Radis R, Krumphals A, et al. 12 - microstructure control in processing nickel, titanium and other special alloys. In: Lin J, and Balint D, M. B. T.-M. E. in M. F. P. Pietrzyk, Eds. Woodhead publishing series in metals and surface engineering. Sawston, Cambridge: Woodhead Publishing; 2012. p. 337–383.
  • Rowe JJ, Morey GW, Zen CS. The quinary reciprocal salt system Na, K, Mg, Ca/Cl, SO4; a review of the literature with new data. Washignton D.C: U.S. Govt. Print. Off; 1972.
  • BS ISO 26146, Corrosion of metals and alloys - method for metallographic examination of samples after exposure to high temperature corrosive environments, vol. ISO/DIS 26. 2011.
  • Hussain T, Syed AU, Simms NJ. Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants. Oxid Met. 2013;80(5–6):529–540.
  • Abbas M, Simms N, Lao L, et al. A dimensional metrology-based approach for corrosion measurement of ship grade steels exposed to various marine environmental conditions. Corros Eng Sci Technol. 2021 Jul;56(5):448–460.
  • Ahari KG, Coleys KS, Nicholls JR. Statistical evaluation of corrosion of sialon in burner rig simulated combustion atmospheres. J Eur Ceram Soc. 1997;17(5):681–688.
  • Derlyukova LE, Tarakanov BM, Bunin VM, et al. Reaction of calcium chloride with oxygen and sulphur oxides. Zh Neorg Khim. 1973;18(9).
  • Ehrlich SA, Douglass DL, “The effect of molybdenum plus chromium on the corrosion of Iron-, Nickel, and Cobalt-base alloys in basaltic lava and simulated magmatic gas at 1150°C,” no. SAND82–7055, p. 75 p, 1982.
  • Peters KR, Whittle DP, Stringer J. Oxidation and hot corrosion of nickel-based alloys containing molybdenum. Corros Sci. 1976;16(11):791–804.
  • Goebel JA, Pettit FS, Goward GW. Mechanisms for the hot corrosion of nickel-base alloys. Metall Trans. 1973;4(1):261–278.
  • Sui F, An T, Zheng S, et al. Influence of effective strain on the corrosion behavior of nickel-based GH4710 superalloy in chloride solutions. Corros Sci. 2022;204:110386.
  • Khalid FA, Hussain N, Shahid KA. Microstructure and morphology of high temperature oxidation in superalloys. Mater Sci Eng A. 1999;265(1):87–94.
  • Park S-J, Seo S-M, Yoo Y-S, et al. Effects of Cr, W, and Mo on the high temperature oxidation of Ni-based superalloys. Materials. 2019;12(18):2934.
  • Ruh A, Spiegel M. 30 - Influence of gas phase composition on the kinetics of chloride melt induced corrosion of pure iron (OPTICORR). In: Baxter D, Heikinheimo L, M. Schütze and W. J. B. T.-N. A. to I. H. T. C. R. Quadakkers, Eds. European Federation of Corrosion (EFC) Series. Finland: Woodhead Publishing; 2008. p. 533–549.
  • Ming Z, Ma H, Wang M, et al. Effects of cations on corrosion of inconel 625 in Molten Chloride Salts. High Temp Mater Process. 2015;35:337–345.
  • Wang Y, Yang J, Li Q, et al. Corrosion of SiC-coated graphite susceptor by NH3 and Cl2. Ceram Int. 2022;48(3):4158–4164.
  • Karlsson S, Pettersson J, Johansson L-G, et al. Alkali induced high temperature corrosion of stainless steel: the influence of NaCl, KCl and CaCl2. Oxid Met. 2012;78(1):83–102.
  • Ropp RC. Chapter 2 - Group 17 (H, F, Cl, Br, I) Alkaline Earth Compounds. Amsterdam: Elsevier; 2013. R. C. B. T.-E. of the A. E. C. Ropp, Ed; 25–104.
  • Wang M, Zeng S, Zhang H, et al. Corrosion behaviors of 316 stainless steel and inconel 625 alloy in chloride molten salts for solar energy storage. High Temp Mater Process. 2020;39(1):340–350.